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Abstract
1. All parasites are heterogeneous in space, yet little is known about the prevalence 

and scale of this spatial variation, particularly in wild animal systems. To address 
this question, we sought to identify and examine spatial dependence of wildlife 
disease across a wide range of systems.

2. Conducting a broad literature search, we collated 31 datasets featuring 89 rep-
licates and 71 unique host– parasite combinations, only 51% of which had previ-
ously been used to test spatial hypotheses. We analysed these datasets for spatial 
dependence within a standardised modelling framework using Bayesian linear 
models, and we then meta- analysed the results to identify generalised determi-
nants of the scale and magnitude of spatial autocorrelation.

3. We detected spatial autocorrelation in 48/89 model replicates (54%) across 21/31 
datasets (68%), spread across parasites of all groups. Even some very small study 
areas (under 0.01 km2) exhibited substantial spatial variation.

4. Despite the common manifestation of spatial variation, our meta- analysis was un-
able to identify host- , parasite- , or sampling- level determinants of this heteroge-
neity across systems. Parasites of all transmission modes had easily detectable 
spatial patterns, implying that structured contact networks and susceptibility ef-
fects are potentially as important in spatially structuring disease as are environ-
mental drivers of transmission efficiency.

5. Our findings demonstrate that fine- scale spatial patterns of infection manifest 
frequently and across a range of wild animal systems, and many studies are able 
to investigate them— whether or not the original aim of the study was to examine 
spatially varying processes. Given the widespread nature of these findings, stud-
ies should more frequently record and analyse spatial data, facilitating develop-
ment and testing of spatial hypotheses in disease ecology. Ultimately, this may 
pave the way for an a priori predictive framework for spatial variation in novel 
host– parasite systems.
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1  | INTRODUC TION

The maintenance and spread of parasites are inherently spatially 
structured (Cross et al., 2005; Kirby et al., 2017; Pullan et al., 2012), 
which holds important ramifications for epidemiological dynamics 
and disease control efforts (Becker et al., 2020; Cross et al., 2005; 
Plowright et al., 2019). Spatial structure can arise through a wide 
variety of processes (Albery, Kirkpatrick, et al., 2021): for example, 
many parasites are transmitted from one host individual to another 
via direct contact, which requires a degree of spatiotemporal coinci-
dence between individuals (Manlove et al., 2018), so that infections 
are spatiotemporally staggered in waves of transmission across the 
population. Other parasites transmit through persistent environ-
mental stages or arthropod vectors whose viability depends on spa-
tially varying abiotic conditions, creating spatial patterns of exposure 
and therefore of infection (Altizer et al., 2006; Jamison et al., 2015; 
Patz et al., 2000). Finally, host immunity and susceptibility can be 
influenced by environmentally varying factors like resource avail-
ability and climatic conditions, with knock- on impacts on parasite 
burden and transmission (Becker et al., 2018, 2020). These diverse 
processes should produce spatial patterns of infection across a wide 
range of wildlife systems, yet many wildlife disease studies examine 
coarse spatial scales or assume that spatial patterns will be negligible 
compared to other hypothesised drivers. As such, it is unclear how 
often infection is spatially structured in these systems, at what range 
this variation can manifest, and how host and parasite traits might 
alter its manifestation.

For logistical reasons, many studies of spatial drivers of infec-
tious disease focus on discrete between- population differences 
across large distances, often using a limited number of discrete 
sampling locations rather than distributing their sampling locations 
continuously in space (Plowright et al., 2019). Nevertheless, some 
work suggests that spatial patterns of infection may manifest at 
surprisingly fine spatial scales, within kilometres or even metres 
(Abolins et al., 2018; Albery et al., 2019; Brooker et al., 2006; Wood 
et al., 2007). This observation begs the question: what is the lower 
bound for the range at which spatial effects can act? Identifying 
the range of spatial dependence (or autocorrelation, meaning that 
data points that are closer together in space tend to be more sim-
ilar) is important for many reasons, including designing sampling 
regimes (Nusser et al., 2008; Plowright et al., 2019; Vidal- Martínez 
et al., 2010), building mechanistic models of parasite evolution over 
space (Best et al., 2011; Débarre et al., 2014), examining how disease 
risk responds to anthropogenic activities like urbanisation (Saito & 
Sonoda, 2017) and directing public health and conservation schemes 
(Brooker et al., 2006; Gilbertson et al., 2016).

Identifying the range of spatial dependence can also help to ex-
amine how parasites spread over landscapes and to determine their 
transmission mechanisms (Reynolds, 1988). For example, spatial de-
pendence across large distances might suggest the influence of major 
climatic correlates, while spatial dependence between nearby loca-
tions implies a highly localised infection process (Pullan et al., 2012). 
In human disease systems, such work has shown that neighbouring 

districts of Thailand have more similar human malaria incidence, sug-
gesting local similarities in abiotic conditions or vector control pro-
grams that could limit mosquito survival (Zhou et al., 2005). Similar 
analyses of wildlife disease could help pinpoint transmission routes 
and guide disease control efforts: for example, if researchers find 
that a zoonotic disease has a long range of dependence in its wildlife 
reservoir, this could motivate the use of widely placed sampling loca-
tions when trying to identify environmental drivers (Becker, Crowley, 
et al., 2019; Plowright et al., 2019). Lastly, the scale of spatial depen-
dence has implications for more general theoretical understanding 
of infectious disease dynamics. For example, links between biodiver-
sity and disease dynamics (e.g. ‘dilution effects’) are dependent on 
the spatial scale of sampling (Cohen et al., 2016; Rohr et al., 2020), 
and several rodent systems have identified contrasting spatial trends 
for zoonotic diseases dependent on sampling scale (Luis et al., 2018; 
Morand et al., 2019).

The strength and range of spatial dependence are also likely 
to depend on the traits of the hosts and parasites involved. For 
example, parasites that persist for longer in the environment are 
likely to experience stronger influences of environmental gradients 
than directly transmitted counterparts (Satterfield et al., 2017). 
Similarly, highly mobile species such as large carnivores or nomadic 
bats may more efficiently disseminate parasites through the envi-
ronment, reducing spatial autocorrelation (Gilbertson et al., 2016; 
Peel et al., 2013). The range of spatial dependence is most com-
monly identified using spatial autocorrelation models (e.g. Albery 
et al., 2019; Becker, Nachtmann, et al., 2019; Brooker et al., 2006; 
Gilbertson et al., 2016; Wood et al., 2007) or analyses that quantify 
the spatial buffer regions in which environmental variables are best 
correlated with disease (e.g. Saito & Sonoda, 2017). Unfortunately, 
these approaches are almost always reactive rather than proactive, 
and they occur on a case- by- case basis rather than being founded 
on general rules or a priori understanding. As such, the relative con-
tribution of host and parasite traits to shaping spatial variation in 
infection remains unknown. To establish general factors influencing 
the scale of spatial dependence in wildlife disease, a variety of host– 
parasite systems must be analysed using comparable techniques and 
then synthesised. As well as revealing fundamental drivers of spatial 
heterogeneity, identifying general rules in this way could facilitate 
the development of predictive models for spatial structuring in host– 
parasite systems with relatively poorly understood epidemiology. 
Researchers could then predict how within-  and between- population 
processes will differ a priori, before using empirical methods such as 
long- term studies at multiple scales (e.g. Luis et al., 2018; Morand 
et al., 2019).

Prescriptive rules for examining geographic variation in wildlife 
disease are rare and hard to generalise, partly due to the analytical 
complexity of identifying them. For example, a recent systematic 
review of ecoimmunology studies uncovered a surprising lack of 
spatial methods, with most studies fitting discrete fixed or random 
effects to control for spatial autocorrelation rather than directly ex-
amining continuous patterns in space or using spatially explicit sta-
tistics (Becker et al., 2020). Nevertheless, the statistical competence 
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of ecologists is high and increasing, particularly with regards to 
areas like movement ecology and network analysis (Albery, Sweeny, 
et al., 2021; Dougherty et al., 2018; Jacoby & Freeman, 2016; 
Webber & Vander Wal, 2019). The increase in such studies over time 
has led to a few general rules to guide spatial sampling: for example, 
where studies seek to quantify the impact of environmental drivers 
on parasitism, larger study extents may allow sampling the widest 
range of different environmental factors and thus increasing spa-
tial variation (Becker et al., 2020; Cohen et al., 2016). Nevertheless, 
no standardised empirical framework yet exists for identifying and 
comparing the presence or range of spatial variation across wild-
life disease systems. Establishing such a framework could help to 
identify general factors shaping spatial variation across systems, im-
proving mechanistic understanding of parasite transmission, spatial 
sampling designs and control efforts.

Here, we conducted a synthesis of spatially distributed wildlife 
disease datasets across a wide range of different host and parasite 
taxa, geographic contexts, and sampling regimes. We analysed these 
datasets individually using a standardised modelling procedure, iden-
tifying how generalised host- , parasite-  and sampling- level factors 
affect the prevalence and range of spatial dependence. Specifically, 
we expected that studies would be most vulnerable to strong spa-
tial effects in larger study areas, with greater sampling efforts, and 
when parasites exhibit indirect transmission mechanisms with ex-
tended environmental stages. We aimed to provide important gen-
eral estimates for the range of spatial autocorrelation from a wide 
range of different host– parasite systems, laying the groundwork for 
a priori predictions about host– parasite systems with unknown spa-
tial properties.

2  | MATERIAL S AND METHODS

2.1 | Data collection

To obtain a wide variety of raw datasets we carried out a litera-
ture search, emailed authors to request data and searched data 
repositories for publicly available datasets (Figure S1). Our liter-
ature search used Web of Science to identify potential datasets 
published between 2009 and 28 August 2019, with the follow-
ing terms: ‘(parasit* OR infect* OR disease) AND (wild OR natural) 
AND (mammal)’. We restricted the search to mammals to increase 
the generalisability of our findings within this group of animals, 
and because of their importance for human and livestock health 
(Han et al., 2016).

We screened a random subset of studies based on their ab-
stracts, excluding: studies of captive animals, review papers and 
meta- analyses; publications without parasite data; studies without 
hosts (i.e. only sampling parasites in the environment); and studies 
of non- mammals. Because our downstream analyses relied upon a 
standard spatial modelling procedure, we also excluded studies with 
few samples (N < 35), very low prevalence (<10%) or very high prev-
alence (>90%), owing to likely failure in model convergence.

If a study had openly available datasets we downloaded them, 
and for those that included binary infection data in map figures, we 
derived approximate spatial locations and associated infection sta-
tus (i.e. ‘heads up digitisation’, HUD). We also searched the Dryad 
data repository (https://datad ryad.org) using the same search terms 
to find publicly available datasets.

For all other studies, we contacted corresponding authors using 
a standardised email template in September– December 2019 to re-
quest data. We classified the authors’ responses into the following 
categories (Figure S1): System not suitable: the system was poorly 
suited to our questions (e.g. migratory host population). No parasi-
tology: the system did not include disease measures. No spatial data 
collected: no sources of spatial data (grid references, GPS locations) 
were collected and associated with individuals or samples. Privacy 
concerns: researchers were unable to share the data because they 
were collected on private land. Data not suitable: once data were in-
spected, the genre of spatial data was found to be unsuitable (e.g. too 
few spatial replicates), or it was deemed unlikely that models would 
run (e.g. points very unevenly distributed, sample sizes too low).

Some of the datasets contained multiple spatial sites that were 
each defined as a distinct population. Therefore, within the datasets, 
each replicate was defined as a unique host– parasite– locality com-
bination examining a contiguous population. We excluded replicates 
with under 100 samples, to ensure convergence of our standardised 
spatial models (see below).

Although we principally aimed to quantify fine- scale, within- 
population spatial effects, we included several studies employing 
continuous or semi- continuous sampling at county and national lev-
els, to investigate whether the methods we used would operate well 
at these scales and to establish an upper bound for sampling effects.

2.2 | Statistical analysis

2.2.1 | Data standardisation

Data were manipulated and analysed using r version 3.6.3 (R 
Development Core Team, 2011). All code is available at github.com/
gfalbery/SpatialMetaAnalysis. Our data cleaning procedure aimed 
to minimise the probability of false positives and to restrict the data 
pool to a continuous spatial distribution of samples. All spatial coor-
dinates were converted to the scale of kilometres or metres to allow 
comparison across systems. We removed spatial outliers and para-
site count outliers; if parasite counts were very overdispersed and/
or highly zero- inflated they were analysed as binomial (0/1) infection 
data rather than negative binomial. Categories with low replication 
(generally <10 samples) were removed. We removed specific classes 
that exhibited very low prevalence: for example, adult Soay sheep 
and red deer had a very low prevalence of Nematodirus sp., which is 
primarily a parasite of young ungulates (Hoberg et al., 2001); hence 
only lambs/calves were analysed. Individual identity was fitted as a 
random effect if the dataset involved repeat measurements of the 
same individuals.

https://datadryad.org
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2.2.2 | INLA models

We based our analysis on a framework previously used in a study 
of spatial patterns of disease in wild red deer (Albery et al., 2019). 
Integrated nested Laplace approximation (INLA) models were fitted 
to each spatial dataset using the inla package. INLA is a deterministic 
Bayesian algorithm that allows fitting of a stochastic partial differ-
entiation equation (SPDE) random effect to quantify and control for 
patterns of the response variable in space. This relies on detection 
of spatial autocorrelation, where samples closer in space are more 
similar than those further apart (Kirby et al., 2017; Tobler, 1970). The 
model estimates how much variance is accounted for by autocorrela-
tion, and models with and without the SPDE effect can be compared 
to assess how it affects the fit of the model (Lindgren & Rue, 2015; 
Zuur et al., 2017). The model also provides a ‘range’ parameter, 
which estimates the distance at which samples are autocorrelated. 
We took this parameter to represent a combination of sampling, 
transmission and immune processes determining the scale of spatial 
variation in the focal population.

We first fitted a ‘base’ model with parasite burden (Gaussian or 
negative binomial) or presence/absence (binary) as a response vari-
able and with any fixed and random covariates. To simplify our analy-
ses, covariates usually included only temporal variables (month, year, 
both as categorical variables), age category and sex. We then fitted a 
model featuring an SPDE random effect, with a penalised complex-
ity prior (Fuglstad et al., 2019). We compared the base model with 
the SPDE model, identifying whether the latter had a lower deviance 
information criterion (DIC), indicating improved model fit. We took 
a change in DIC (ΔDIC) of 2 to distinguish between the two models 
and calculated the DIC weight for the base and SPDE model, giving a 
proportion (0– 1) that can be conceptualised as ‘confidence that the 
spatial model was the best- fitting’ (Wagenmakers & Farrell, 2004). 
We also extracted the INLA range parameters. In total, we fitted 
INLA models to 89 spatial replicates, each of which comprised a dif-
ferent host– locale– parasite combination, generated from 31 differ-
ent study systems.

2.2.3 | Meta- analysis of INLA models

To identify factors driving general trends of spatial variation, we 
conducted a meta- analysis treating each unique host– locale– 
parasite combination as a replicate, including parasite- , host-  and 
sampling- level traits as fixed effects. We constructed hierarchical 
models using the metafor package. Generally, meta- analyses typi-
cally focus on synthesising effect sizes and their variances across 
multiple systems (e.g. Sánchez et al., 2018). However, as generalised 
spatial variation does not have a directional effect, we instead ana-
lysed measures of model fit, including DIC weight (a proportion from 
0 to 1) and the autocorrelation range (bounded at 0 and infinity). The 
measure of model fit gives an impression of the detectability and 
importance of spatial patterns, while comparisons of the range esti-
mate across systems will inform whether different host and parasite 

traits cause spatial patterns to vary more sharply in space. We used 
the escalc function to derive sampling variances for DIC weight 
and the INLA range (using the point estimate and 95% confidence 
interval).

Our hierarchical models included each replicate nested within 
study as a random effect to account for within-  and between- study 
heterogeneity (Konstantopoulos, 2011). We also included a random 
effect for host family, for which the covariance structure used the 
phylogenetic correlation matrix (Nakagawa & Santos, 2012); we 
obtained our phylogeny from the Open Tree of Life with the rotl 
and ape packages (Michonneau et al., 2016; Paradis et al., 2004). All 
models used the `rma.mv` function and weighting by sampling vari-
ance. We first assessed heterogeneity in each of our response vari-
ables by fitting a random- effects model (REM; intercept only) with 
restricted maximum likelihood and then used Cochran's Q to test 
if such heterogeneity was greater than expected by sampling error 
alone (Borenstein et al., 2009).

We next used mixed- effects models (MEMs) to test how sam-
pling- , host-  and parasite- level factors affected our INLA model 
outputs. Sampling variables included: Number of samples; Sampling 
area (total rectangular extent between the furthest points on the 
X-  and Y- coordinates, in km2); Sampling method (3 levels: trapping, 
censusing and necropsy/convenience sampling); Spatial encoding 
method (4 levels: GPS; trapping grid; locality; Easting/Northing); 
Spatial hypothesis testing (binary— i.e. did the study aim to quantify 
spatial variation in some way?). We interpreted this latter variable as 
a combination of study design and publication bias, where studies 
that are intended to pick up spatial variation are both more likely 
to identify spatial patterns because of their sampling design, and 
then more likely to be published if they do. Parasite traits included 
transmission mode (four levels: direct; faecal– oral; vector- borne; en-
vironmentally transmitted) and Taxon (eight levels: arthropod, nem-
atode, trematode, cestode, protozoan, bacterium, virus, other). Host 
traits included: Home range size (in km2; log- transformed); body 
mass (in grams; log- transformed); host order (five levels: Carnivora, 
Chiroptera, Ungulates, Glires and Proboscidea). There was only 
one lagomorph, so rodents and lagomorphs were lumped together 
into the ‘glires’ clade. The same was true of odd- toed ungulates 
(Perissodactyla), so they were lumped with Artiodactyla into an ‘un-
gulates’ clade. For species for which a phenotypic measure (e.g. body 
mass) was unavailable, we used the value for the closest relative for 
which the data were available, according to a mammalian supertree 
(Fritz et al., 2009).

To identify important drivers among these many correlated 
drivers, we conducted a model addition process using maximum 
likelihood and Akaike information criterion corrected for sample 
size (AICc) to determine model fit. Each of our meta- analytical ex-
planatory variables was added in turn, and the best- fitting variable 
(i.e. the one that most decreased AICc) was kept for the following 
round. This process was repeated with the remaining variables, until 
no variables improved model fit by more than two AICc. We report 
the final model, with the minimal number of variables that improved 
model fit.
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2.2.4 | Spatiotemporal INLA models

Finally, we constructed spatiotemporal INLA models to assess the 
consistency of spatial hotspots from year to year, and to investigate 
evidence of ephemeral waves of transmission across the study sys-
tems. Of our 89 replicates, 44 replicates had more than 1 year of 
sampling, with more than 100 spatial points per year, facilitating fit-
ting spatiotemporal models. For these replicates, we first reran the 
original models with the reduced dataset that only included years 
with more than 100 replicates. We then fitted a spatiotemporal 
model with a different spatially distributed effect (i.e. ‘spatial field’) 
for each year, with no autocorrelation between the fields. Improved 
model fit for this model would imply that the spatial distribution of 
the parasite varied notably from year to year. Second, we fitted a 
similar spatiotemporal model with an ‘exchangeable’ autocorrelation 
specification between years. This model format allows correlation 
between spatial fields, but without enforcing a time sequence: that 
is, all fields were correlated by the same parameter (‘Rho’) regard-
less of how far apart in time they were. The Rho parameter, which is 
bounded between −1 and 1, was then interpreted to give an impres-
sion of the spatiotemporal consistency of the parasite distribution. 
Parasites with high rho coefficients had very similar hotspots from 
year to year, while those with low coefficients did not.

3  | RESULTS

Our literature review returned 3,399 studies, and we screened a 
random selection of 1993 abstracts (over 2 weeks) to expedite data 
collection. 1,151 of these were unsuitable because they were in the 
wrong environment, host or subject area, or had no data. This left 
496 studies, for which we assessed data availability. Very few stud-
ies publicly archived continuous, within- population spatial data. Only 
3/496 studies (0.6%) had such data ready to download, and 4 further 
studies had maps of samples from which we could easily digitise suf-
ficient data (Figure S1). We also already owned three datasets. We 
then emailed 432 authors to request data if unavailable (Figure S1). 
When we emailed them, 92 responded, 22 of which (23.9%) indicated 
that they had not collected any within- population spatial data as part 
of their study (Figure S1). After navigating a number of other obsta-
cles to data sharing, followed by initial data triage, 26 authors kindly 
offered to provide us with spatial data, resulting in 36 total viable 
datasets. Of these 36 datasets, 31 had at least one continuous spatial 
population with >100 samples to which we could apply INLA models.

Most authors who responded (and had collected spatial data) were 
happy to share data, and the vast majority of studies for which we did 
not receive data were due to a lack of response or secondary response 
(Figure S1). Fifteen authors responded but declined to share data 
due to privacy concerns, ongoing data usage or authorship concerns. 
Comparing this to the 22 responders who had not collected spatial 
data implies that the main reason researchers do not share spatial data 
is that they did not collect it; however, given that >300 researchers 
did not respond (and they may not have been a random subset of the 

total), our ability to infer this confidently is diminished. Notably, stud-
ies that investigated spatial variation tended to be larger than those 
that did not (Figure S2), implying that larger study areas motivate re-
searchers to more often consider spatial variation in their analyses.

We concluded data collection with 31 datasets, including 89 
spatial replicates and 90 host species (Figure 1). Sixty- seven repli-
cates were species level; the rest were conducted on selections of 
species in the same order (e.g. rodent trapping, bat sampling, carni-
vore faecal sampling). The datasets were distributed across five con-
tinents (Figure 1), and included seven different mammalian orders 
(Figure 1). The studies examined 41 different parasites, across a di-
verse selection including viruses (N = 6), bacteria (N = 10), helminths 
(N = 25), arthropods (N = 14) and one transmissible cancer (N = 8). 
Infection measures included counts of parasites or immune markers 
(N = 30), binary assessment of infection status using observation 
or seropositivity (N = 52), and one study used parasite- associated 
mortality as a proxy (Myanmar elephants Elephas maximus (Lynsdale 
et al., 2017)). Study systems included, for example: rodent trapping 
studies examining flea burdens and flea- borne pathogens [e.g. ro-
dents trapped in the Arizona hills (Kosoy et al., 2017) and chipmunks 
in Yosemite National Park (Hammond et al., 2019)]; long- term stud-
ies with parasite data collected over the course of several decades 
[e.g. the Soay sheep of St Kilda (Hayward et al., 2014), the Isle of 
Rum red deer (Albery et al., 2019) and the badgers of Wytham Wood 
(Albery et al., 2020)]; and studies examining seropositivity of mam-
mals across a geographic range to identify endemic areas [e.g. British 
otters infected with Toxoplasma gondii (Smallbone et al., 2017)]. See 
Table S1 for a description of each study system and the associated 
references and researchers that provided us with the data. The area 
of the study systems varied widely, from 0.02 to 106 km2 (Figure 2a).

Our INLA models applied across datasets consistently revealed 
strong spatial patterns of disease (Figures 2 and 3). The mean DIC 
change across all study systems was −14.5 (median −3.3), and the 
spatial model fit better than the base model for 65/89 models (73%; 
DIC weight > 0.5). Using a conventional change of 2ΔDIC as a cut-
off for improved model fit, 54% of models across 21 study systems 
displayed detectable spatial patterns (Figure 2). Using meta- analysis 
models, Cochran's Q revealed no between- study heterogeneity for 
DIC weight (Q86 = 46.89, p = 0.9998) but extreme heterogeneity for 
the range of autocorrelation (Q86 = 3,823, p < 0.0001).

Although half of the systems were spatially structured, our meta- 
analyses revealed that few host- , parasite-  or sampling factors were 
predictive of spatial effects (see Table S2). The best- fitting model for 
DIC weight included only the study duration (years), revealing that 
long- term studies were slightly more likely to uncover spatial effects 
(ΔAIC = 3.38; for all other variables ΔAIC < 1.56). The INLA range pa-
rameter increased with study area (ΔAIC = 74.44) but was not affected 
by any other variables (ΔAIC < 0.09). No variation was accounted for 
by host or parasite taxon, host size or host ranging behaviour. Most 
notably, there was no significant variation in spatial range or DIC 
changes across parasite transmission modes (Figure 3a,b).

Spatiotemporal models examining a subset of multi- year stud-
ies consistently improved model fit over static equivalents. The 
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best- fitting model for many examined replicates was a spatiotempo-
ral model, but the findings did not differ notably across transmission 
modes (Figure 3d). Rho (temporal autocorrelation of the spatial field) 
estimates for these models were moderate, and did not vary notably 
across transmission modes (Figure 3c). Most (36/44, 82%) had 95% 
credibility intervals that overlapped with zero, and 8 (18%) were sig-
nificantly positive.

4  | DISCUSSION

We uncovered strong, pervasive spatial heterogeneity manifesting 
within an expansive diversity of mammal– parasite systems. Contrary 
to expectations, spatial heterogeneity was equally common and 
short ranged for all transmission modes, despite our prediction that 
parasites with longer environmental stages would be more likely to 

F I G U R E  1   The geographic and taxonomic distribution of the 31 datasets that we included in our final meta- analysis. Our data were 
evenly spread across the earth (Panel a), although with a notable cluster in Western Europe (see inset map in pink rectangle, Panel b). 
Sampling areas >5,000 km2 are displayed as rectangles; smaller sample areas are represented by dots. Study system names correspond 
to the names in Table S1. The datasets also included a wide range of different mammal orders and families (Panel c). The inset phylogeny 
represents order- level summaries for studies that were not carried out at the species level. Dots next to species’ names in the phylogenies 
denote that multiple datasets included samples from that species. Different colours correspond to different taxonomic groups used for 
meta- analysis: ungulates, carnivores, glires, elephants and carnivorous marsupials
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exhibit spatial patterns. There are therefore three main takeaways 
from our findings: first, many study systems are spatially structured, 
likely by a combination of drivers, whether or not the study in ques-
tion aims to quantify spatial variation or environmental drivers. 
Second, these drivers are relatively rarely investigated, but many 

systems currently have the spatial power and ability to investigate 
them if they wish, irrespective of the host– parasite system involved. 
Third, we were unable to develop a predictive framework for spa-
tial dependence using the data available, but given more data across 
a wider range of host– parasite systems, such a framework may be 

F I G U R E  2   The spatial autocorrelation term (SPDE) improved models across host– parasite systems and sampling regimes. The Y axis 
displays the degree of confidence that the spatial autocorrelation term improved model fit (deviance information criterion weight), where 
models at the top of the panel fitted better than those at the bottom. The dashed line at DIC weight = 0.5 denotes the point at which spatial 
and non- spatial models were equally supported. (a) larger study areas more often revealed spatial patterns. (b) most of our 31 study systems 
exhibited at least one spatially structured host– parasite combination. Study systems have been assigned arbitrary letters to anonymise 
them, and are arranged in order of increasing DIC weight. (c) multiple mammalian host taxa exhibited spatial effects. (d) multiple parasite 
taxa exhibited spatial effects. The points in panels C AND D are sized according to the number of samples in the replicate. None of the terms 
displayed here had significant effects in our meta- analysis
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possible to develop in the future. We therefore recommend that wild 
animal studies in disease ecology more regularly collect and share 
data on spatial behaviours and sampling locations where possible, 
regardless of host, parasite or sampling regime.

Our methodology differed from that used in many other stud-
ies by investigating generalised spatial dependence rather than by 
quantifying specific environmental drivers that might drive this 
dependence. The only similar study that we know of (Gilbertson 

F I G U R E  3   Parasites of diverse transmission modes exhibit spatial autocorrelation effects. We display (a) spatial model DIC (deviance 
information criterion) weight, with points representing the outcome of each replicate INLA (integrated nested Laplace approximation) 
model. Boxplots represent the range, interquartile range, and median for parasites of each transmission mode. The dashed line at DIC 
weight = 0.5 denotes the point at which spatial and non- spatial models were equally supported; points above the line display host– parasite 
systems for which the spatial model was better supported than the non- spatial model. (b) INLA autocorrelation ranges; each line represents 
the autocorrelation decay of a different replicate INLA model. The colours correspond to different transmission modes, demonstrating 
substantial mixing of the range estimates for parasites of different transmission modes. (c) Temporal autocorrelation (Rho) component 
demonstrating inter- annual correlations between spatial fields, for the subset of model replicates that had multiple sampling years. Points 
represent a different replicate INLA model. The dashed line at Rho = 0 represents the point of no correlation; points above the line had a 
positive correlation, while points below the line had a negative correlation. (d) Mosaic plot displaying the proportions of best- fitting models 
according to DIC changes, across our spatiotemporal replicates
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et al., 2016) used 48 parasite– locality replicates of cougar Puma con-
color and bobcat Lynx rufus populations and found little evidence of 
spatial autocorrelation in parasite infection. In contrast to their ap-
proach, we used a wide set of different hosts, and our replicates all 
had between 100 and 10,000 samples (Table S1), whereas only a few 
of their replicates had >100 samples, and none had >200 (Gilbertson 
et al., 2016). Additionally, they used Mantel tests, which do not ac-
count for fixed covariates, while the INLA analyses we employed are 
more suited to controlling for this variation. As such, we interpret 
our contrasting findings to represent a difference in the power of 
our analyses, and the absence of large carnivores from our dataset. 
Owing to its generality, similar methodology could be used in a range 
of ecological contexts as a useful hypothesis- generating exercise: 
after uncovering strong spatial structuring, researchers could follow 
up on this finding by investigating possible biotic or abiotic drivers. 
We hope that more disease ecology studies in wild animals will make 
use of similar methodology to ours to bolster our understanding of 
disease dynamics in wild settings.

Surprisingly, neither larger study systems nor those that had pre-
viously been used to study spatial hypotheses were more likely to 
exhibit detectable spatial patterns. Some very small spatial replicates 
exhibited strong spatial effects, and the smallest area demonstrating 
a strong spatial trend was 0.002 km2 (Figure 2). On the other hand, 
some very large, well- sampled areas showed no detectable spatial 
patterns: for example, anti- Toxoplasma gondii antibodies in almost 
200 Pennsylvania black bears Ursus americanus were not autocor-
related (Dubey et al., 2016) even though the prevalence of T. gon-
dii exhibited very strong spatial patterns in otters Lutra lutra across 
the United Kingdom (Smallbone et al., 2017), and in house mice Mus 
musculus within the Senegalese city of Dakar (Galal et al., 2019). 
However, larger study extents unsurprisingly exhibited more long- 
range spatial autocorrelation effects. These areas inevitably contain 
within them a multitude of smaller spatial effects and gradients, 
so the findings of a specific study will depend critically on the spa-
tial sampling scale it employs (Cohen et al., 2016; Luis et al., 2018; 
Morand et al., 2019; Pullan et al., 2012). Notably, the studies that 
did attempt to quantify spatial variation tended to have substantially 
larger spatial extent than those that did not (Figure S2); this may rep-
resent a perception bias, where researchers operating in larger study 
areas tend to anticipate spatial variation as being more important to 
account for— or, vice versa, researchers asking spatial questions tend 
to sample across a wider range to incorporate as much testable vari-
ation as possible (Becker, Nachtmann, et al., 2019). The finding that 
larger study systems do not tend to more commonly exhibit detect-
able spatial patterns in disease demonstrates that this perception 
bias is perhaps unwarranted, and researchers at all scales should be 
able to incorporate spatial components and hypotheses about infec-
tion processes.

Despite the ubiquity of spatial effects, we discovered a very low 
frequency of spatial data collection and sharing: only three pub-
licly available datasets included spatial data, and 22/92 responders 
said they had not collected any spatial data. The responses that we 
received implied that, alongside concerns about privacy and the 

understandable desire to control the data associated with one's study 
system, the main reason for not sharing spatial data was that the 
data were not collected in the first place. Location data may evade 
collection in some contexts where GPS signals are hard to receive, 
precluding spatial data collection and investigation of spatial ques-
tions. GPS instruments that function in remote environments can be 
expensive, and for studies that do not explicitly aim to identify spa-
tial patterns this may seem an unnecessary expenditure. However, 
smartphones that can receive GPS data are now widely available and 
can be used in all but the most remote locations. As many research-
ers carry the means to collect spatial data in their pocket on a daily 
basis, it might take little alteration to collection protocols to include 
location data in many cases. Future studies should capitalise on 
the increasing availability of spatial telemetry and biologging tech-
nology, and associated analytical capacity (Kays et al., 2015; Long 
et al., 2014; Williams et al., 2020) to more frequently record, analyse, 
and share spatial data in disease ecology (Albery et al., 2019; Kirby 
et al., 2017). This practice will facilitate easier testing of the hypoth-
eses that we outline above, as well as informing sampling regimes 
and mechanistic models of disease dynamics, and allowing a priori 
prediction of host– parasite systems’ spatial properties. Moreover, 
large- scale, integrative analyses of disease processes across systems 
are increasingly being used to inform on the epidemiological conse-
quences of global change (e.g. Cohen et al., 2020); increased avail-
ability of georeferenced disease samples could profoundly facilitate 
such analyses, perhaps ultimately moving us towards developing a 
‘weather system’ for infectious disease outbreaks.

Privacy is an issue of considerable ethical concern in epidemi-
ology (Kirby et al., 2017), and we contend that this concern may be 
contributing to a lack of open data sharing in wildlife disease ecology. 
Sharing spatial data risks connecting individuals with their disease 
status, which is particularly unwelcome in the case of stigmatised 
diseases such as HIV/AIDS; indeed, although we did not examine 
human diseases, several of the researchers we contacted opted not 
to share data because they were concerned that their results could 
be traced to specific households or individuals. Researchers could 
overcome this issue by jittering points, or by masking the actual GPS 
locations, replacing them with relative locations which are the same 
distance away (Kirby et al., 2017). Unfortunately, the first option will 
reduce precision and the latter may preclude investigation of spe-
cific geographic hypotheses or environmental drivers, but this is a 
small price to pay in the cases where data are potentially sensitive.

We foresee a range of potential uses for curated datasets like 
ours. For example, further analysis on this dataset could inves-
tigate a number of general drivers such as population density or 
environmental heterogeneity, informing how they drive spatial 
patterns of infection within and across systems. Moreover, similar 
methodology could be applied to other animal groups such as birds 
and reptiles, whose nest and burrow locations offer ideal spatial 
context (e.g. Wood et al., 2007), or to marine mammals like dolphins 
that are regularly subject to behavioural censuses and disease sur-
veillance (e.g. Leu et al., 2020). This approach could also be applied 
to intensively and widely spatially distributed sampling locations, 
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either for smaller animals such as insects (Wallace et al., 2021) or 
for immobile organisms like plants (Halliday et al., 2020). Finally, 
immunity is often quantified alongside parasite burden and preva-
lence, and it would be interesting to see whether spatial variation 
in immunity manifests on the same scale, and whether it predicts 
disease risk (Becker et al., 2020). Given these diverse and wide-
spread opportunities, popularising the breadth and frequency 
of open spatial data sharing is likely to open the door to a wide 
range of interesting studies and, ultimately, to the development 
of predictive a priori frameworks for spatial processes in disease 
ecology.
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