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1  |  INTRODUC TION

Parasites can drive the evolution of a variety of traits in host animals 
(Graham et al., 2011). Host behaviour is a fundamental component 
of parasite transmission, and often greater sociality correlates with 
greater rates of exposure— and therefore infection (e.g. Lucatelli 
et al., 2021; Schmid- Hempel, 2021). However, animals can alter their 

behaviour in many ways that reduce their infection risk or modulate 
the outcome of an infection (Hart & Hart, 2021; Lopes et al., 2022; 
Stockmaier et al., 2021), with important emergent consequences 
at the group or population level (Albery et al., 2020; Stroeymeyt 
et al., 2018).

Behavioural anti- parasite defences, like other anti- parasite 
defences, can take three general forms: avoidance, resistance 
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Abstract
1. Animals exhibit a variety of behavioural defences against socially transmitted 

parasites. These defences evolved to increase host fitness by avoiding, resisting 
or tolerating infection.

2. Because they can occur in both infected individuals and their uninfected social 
partners, these defences often have important consequences for the social group.

3. Here, we discuss the evolution and ecology of anti- parasite behavioural defences 
across a taxonomically wide social spectrum, considering colonial groups, stable 
groups, transitional groups and solitary animals.

4. We discuss avoidance, resistance and tolerance behaviours across these social 
group structures, identifying how social complexity, group composition and inter-
dependent social relationships may contribute to the expression and evolution of 
behavioural strategies.

5. Finally, we outline avenues for further investigation such as approaches to quan-
tify group- level responses, and the connection of the physiological and behav-
ioural response to parasites in different social contexts.
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and tolerance. We define avoidance behaviours as actions that re-
duce any type of physical contact between uninfected individuals 
and the infectious agent, whether the infectious agent is in the 
environment, in or on other hosts. Avoidance- induced contact 
limitation— whether driven by the infectious individual or by its 
group members— will contribute to reducing disease transmission 
within the group. Resistance behaviours reduce parasite load (Hall 
et al., 2017; Rigby et al., 2002). Some behaviours directly remove 
pathogens from the exposed individual, like grooming, which can 
be exerted by the individual itself (self- grooming) or by its group 
members (allogrooming), and which will help to prevent establish-
ment of the infection and transmission. Other behaviours support 
the immune system of individuals and reduce parasite load by cre-
ating unfavourable conditions for the parasite through, for instance, 
behavioural fever (Rakus et al., 2017) or self- medication (de Roode 
et al., 2013), or by freeing resources otherwise used for other tasks. 
The latter has been suggested for sickness behaviours— a set of be-
havioural changes in response to infection such as lethargy, loss of 
appetite, and reduced movement (Hart, 1988). Finally, tolerance be-
haviours (e.g. Adelman & Hawley, 2017; Burgan et al., 2019) reduce 
the negative impact of infection on host fitness without reducing 
parasite load (Medzhitov et al., 2012; Råberg et al., 2008). Group- 
living can support individual tolerance through beneficial social in-
teractions (e.g. if mutual feeding allows sick individuals to maintain 
fitness) or can improve group tolerance by compensating for the 
lost workforce of sick individuals to maintain colony performance 
(Beros et al., 2015).

Different modes of behavioural defences are predicted to have 
vastly different consequences for parasite transmission and host– 
parasite coevolution (Råberg et al., 2008). For example, while re-
sistance is expected to decrease parasite prevalence in a host 
population, tolerance is not, and may even increase population- 
level prevalence. Moreover, the same behaviour can contribute to 
multiple defence modes and can do so at different scales (e.g. in-
dividual vs. group level). For instance, sickness behaviours could (i) 
save resources that can then be redirected to the immune system to 
decrease pathogen load (Hart, 1988), thereby increasing individual 
resistance, (ii) increase individual tolerance, that is the individual's 
ability to reproduce or survive in the presence of a high pathogen 
load (Medzhitov et al., 2012), and (iii) contribute to avoidance if they 
cause social withdrawal in infected individuals, which in turn reduces 
transmission to other group members (Stockmaier et al., 2021).

Because these behaviours can affect not only the exposed or in-
fected individual but also its conspecifics, the evolution and expres-
sion of these anti- parasite behaviours should depend on the social 
organization and structure of the host groups. It is unclear, however, 
how the mode and strength of such defences vary along axes of so-
ciality, and how elements of social “complexity” should affect their 
sophistication (Pull & McMahon, 2020). Here, we discuss how ani-
mals' social structures could influence the evolution and expression 
of avoidance, resistance, and tolerance behavioural defences against 
parasites that are socially transmitted (including both micro-  and 
macroparasites). We outline studies that have examined behavioural 

responses to parasites in both invertebrate and vertebrate hosts, 
representing a range of social structures, which we loosely catego-
rize as colonial groups, stable groups, transient groups and solitary 
animals. It is important to note that for some social groups (like colo-
nial groups), behavioural avoidance, resistance and tolerance strate-
gies likely evolved due to their benefits of protecting the group (i.e. 
social immunity; Cremer et al., 2007), but not necessarily providing 
direct benefits to all individual group members. For less coopera-
tive groups, behaviours likely evolved due to their direct benefits at 
the individual level but may still have some group- level effects (i.e., 
increase fitness of other group members). For instance, even if indi-
viduals avoid or resist infection for selfish reasons, this might also 
reduce the likelihood of transmission to conspecifics (Albery, 2022). 
Ultimately, we hope to widen the diversity of study systems con-
sidered for the study of behavioural anti- parasite responses, in a 
framework for understanding how axes of sociality should influence 
the expression and evolution of behavioural parasite avoidance, re-
sistance and tolerance.

2  |  COLONIAL GROUPS

We define colonial groups as permanent, obligate groups with very 
high levels of mutual dependence between group members. This 
mutual dependence often (but not always) stems from reproduc-
tive division of labour (i.e. the presence of non- reproductive help-
ers). These groups can exhibit varying levels of relatedness between 
group members, ranging from very high relatedness in clonal groups 
of some aphids and some ants; higher than normal full- sib related-
ness, as between females in the social Hymenoptera like many bees, 
wasps or ants; standard full- sib families like in termites; as well as 
lowered relatedness due to multiple reproductive individuals in the 
colony or multiple mating, as is typical in leafcutter ants and hon-
eybees. Examples include all social insects (all ants and termites, 
and the social bees and wasps, Schmid- Hempel, 1998), as well as 
some aphids (Stern & Foster, 1997), snapping shrimps (Hultgren 
et al., 2017), mole rats (Faulkes & Bennett, 2013) and colonial 
siphonophores (Dunn & Wagner, 2006). Based on group traits such 
as reproductive division of labour and close relatedness of group 
members, behavioural anti- parasite defences of colonial groups are 
expected, and often found, to be targeted at protecting the group 
rather than the individual.

2.1  |  Behavioural avoidance in colonial groups

Compared to other social groups, classical avoidance behaviour 
displayed by healthy individuals to reduce contact with infectious 
individuals (Gibson & Amoroso, 2022) rarely occurs in colonial 
groups, even if examples exist where healthy colony members spa-
tially separate infected nestmates, or move the location of the nest, 
leaving sick individuals behind (reviewed in Cremer et al., 2007). 
More frequently, healthy colony members do not avoid contact with 
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pathogen- exposed individuals but instead engage in sanitary actions 
to reduce their parasite load (see below).

Interestingly, however, it is often the infected individuals them-
selves that show contact reduction to their healthy colony members, 
particularly in species with complete reproductive division of labour 
(Boomsma & Gawne, 2018; Pull & McMahon, 2020) between the re-
productive colony members and their sterile helpers. As the helpers 
in these species rely more on whole- colony health than on their own 
to pass on their genes to the next generation, infected individuals 
have an interest not to harm the colony and thus engage in behaviours 
that prevent transmission of parasites to others. When themselves 
infectious, social insects often reduce social contact with group 
members, for example, by spending less time in the brood chamber 
(Ugelvig & Cremer, 2007) and in the nest (Stroeymeyt et al., 2018). 
Such “altruistic avoidance behaviour” seems to be fully exerted by 
the infectious individual, in the absence of any observed aggression 
by colony members. Notably, while resulting in the same outcome, 
prevention of social contact between infectious and healthy group 
members in this case is not driven by the healthy but by the infec-
tious individual (in contrast to classical avoidance of infected con-
specifics, see Gibson & Amoroso, 2022). This contact reduction also 
occurs at non- infectious disease stages (Bos et al., 2012; Conroy & 
Holman, 2022; Detrain & Leclerc, 2022) and in generally moribund 
individuals (Heinze & Walter, 2010; Ruepell et al., 2010), where it 
has been suggested to result from impaired perception of social cues 
(Kralj & Fuchs, 2006; Leclerc & Detrain, 2017) or sickness behaviour. 
More work is needed to distinguish sickness behaviours such as re-
duced locomotion (Alciatore et al., 2021; Richard et al., 2008, but 
see Geffre et al., 2020) or reduced performance of colony tasks 
(Scharf et al., 2012) from altruistic self- removal, even though both 
may contribute to lower contact rates and parasite spread (Figure 1). 
Importantly, contact- avoidance by infectious individuals in social in-
sects can reduce the likelihood of disease transmission through the 
group, and therefore complements resistance behaviours that ac-
tively reduce pathogen load (see below).

2.2  |  Behavioural resistance in colonial groups

When the first line of defence provided by avoidance fails, resist-
ance behaviours reduce individual or colony- level parasite load, 
either by removing the infectious agent itself, by reducing parasite 
replication, or by removing infected hosts, which would otherwise 
present a risk of spreading the parasite within the group. Specific 
resistance strategies vary depending on the biology of the parasite 
and the infection stage. At the individual level, self- grooming is an 
efficient way to clean the body surface from infectious particles 
(Hughes et al., 2002; Reber et al., 2011; Zhukovskaya et al., 2013). 
Similarly, self- medication using antimicrobial compounds can re-
duce infection from contaminated food (Tragust et al., 2020), and 
ants exposed to contamination with a fungal pathogen ingest oth-
erwise harmful reactive oxygen species to fight the infection (Bos 
et al., 2015; Rissanen et al., 2022).

At the group level, allogrooming of infectious individuals by their 
healthy colony members is widespread in social insects (Hughes 
et al., 2002; Reber et al., 2011; Rosengaus et al., 1998; Zhukovskaya 
et al., 2013). Allogrooming is particularly effective against, but not 
restricted to, (see Beros et al., 2021) parasites that infect from the 
body surface (and can thus be mechanically removed and disinfected 
by grooming, Tragust, Mitteregger, et al., 2013), and it can dramat-
ically increase the survival of fungus- contaminated hosts (Hughes 
et al., 2002; Rosengaus et al., 1998), with low risk for the groomers 
(Konrad et al., 2012). The sophistication of resistance behaviours in 
social insects suggests that healthy colony members often do not 
need to avoid infectious others (Theis et al., 2015), but instead en-
gage in collective resistance behaviours, such as grooming (Alciatore 
et al., 2021; Hughes et al., 2002; Reber et al., 2011; Rosengaus 
et al., 1998).

In addition to cleaning one another, individuals in colonial groups 
should also perform high levels of nest hygiene. While it was sug-
gested that antimicrobial use increases with sociality in bees (Stow 
et al., 2007), it is unknown how common this pattern is and with 
what precise axes of sociality it correlates (Figure 1): is hygiene 
linked to the complexity of social organization, to genetic interindi-
vidual conflict, or simply to group size or density? Colonial animals 
often have permanent nests in which parasites can build up over 
time, which raises the question of whether hygiene is less important 
in social groups without permanent nesting locations (e.g. nomadic 
army ants).

When individual resistance or collective grooming or disinfection 
fails, so that hosts develop advanced infections and can no longer be 
cured, these individuals are commonly targeted by antagonistic be-
haviours that reduce colony- level pathogen load and thus increase 
colony- level resistance by preventing the replication and spread of 
infectious particles through the colony (Pull et al., 2018). For example, 
virus- infected honeybees are attacked by their nestmates (Drum & 
Rothenbuhler, 1985; Waddington & Rothenbuhler, 1976) or evicted 
from the nest altogether (Baracchi et al., 2012). Other antagonistic 
responses include shifts from grooming to cannibalization as fungal 
infections progress in termites (Davis et al., 2018), the removal of in-
fected brood in bees and ants (Rothenbuhler, 1964; Tragust, Ugelvig, 
et al., 2013, but see Drees et al., 1992), and even destructive disin-
fection in ants (Pull et al., 2018), which results in the brood's death. 
Because this sacrifice prevents pathogen transmission from the in-
fected individual to other group members, it benefits the whole 
colony, and thereby also indirectly the sacrificed individual. We there-
fore expect infectious individuals in colonial groups not to hide their 
infection status, or even to actively signal it (Cremer, 2019; Rosengaus 
et al., 1999). Yet, the mechanisms involved and the role of the sick indi-
vidual in triggering these behaviours are still underexplored (Figure 1).

2.3  |  Behavioural tolerance in colonial groups

In colonial groups, tolerance has been suggested as an important 
mechanism acting at both the individual and colony level, particularly 
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812  |   Functional Ecology STOCKMAIER et al.

because the care and stable access to resources provided by group 
members might allow infected individuals to function despite high 
parasite loads (Cremer et al., 2018; Kurze et al., 2016). Examples of 

behavioural responses that may promote group- level tolerance in-
clude behavioural shifts (e.g. in task allocation) by uninfected work-
ers of social insect colonies that compensate for the reduced work 

F I G U R E  1  Open questions and future directions (illustrations from Biorender).
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performance by the infected workers, such as in cestode- infected 
ants (Scharf et al., 2012); such tolerance may however come at a 
cost, such as increased mortality in nestmates taking over tasks of 
the missing workforce (Beros et al., 2015).

3  |  STABLE GROUPS

We define stable groups as mostly permanent where individuals 
nonetheless retain the ability to move between groups (e.g. fission- 
fusion dynamics). In these groups, there is often high interdepend-
ence between specific subsets of individuals due to cooperative 
relationships, and reproduction can be skewed towards a few individ-
uals (e.g. cooperative breeding), but who reproduces might change. 
Social investments are often directed towards certain individuals 
that, for instance, increase indirect fitness through kin selection, 
or confer fitness benefits through other mechanisms of coopera-
tion such as reciprocity. Examples include vampire bats (Stockmaier 
et al., 2018, 2020), mandrills (Poirotte et al., 2017; Poirotte & 
Charpentier, 2020), banded mongoose (Fairbanks et al., 2015), meer-
kats (Smyth & Drea, 2016), or cooperatively breeding ambrosia bee-
tles (Nuotclà et al., 2019). Because relationships between individuals 
strongly differ (e.g. between socially bonded animals), behavioural 
anti- parasite behaviours are expected to depend on whom an in-
dividual interacts with (Poirotte & Charpentier, 2020; Stockmaier 
et al., 2020). For instance, conspecific avoidance might only be ben-
eficial for an individual if it does not lose fitness benefits from an 
existing relationship with a diseased conspecific.

3.1  |  Behavioural avoidance in stable groups

Avoidance of parasitized conspecifics in stable groups is generally 
present (e,g., Poirotte & Charpentier, 2020) but can be modulated 
by inter- individual relationships, likely reflecting the fitness benefits 
gained from these privileged relationships. For instance, mandrills 
avoid grooming others that have high loads of orofecal parasites 
(Poirotte et al., 2017), but this avoidance is suppressed towards kin 
(Poirotte & Charpentier, 2020). Conspecific avoidance might also be 
absent as shown in banded mongoose that continued allogroom-
ing their tuberculosis infected groupmates (Fairbanks et al., 2015), 
illustrating that avoidance could be absent in stable, highly social 
groups that continuously interact and that individuals might even 
choose to help others (see more details below in tolerance section, 
Loehle, 1995; Fairbanks et al., 2015; Hart, 1990).

Social withdrawal as a result of sickness behaviours has been ob-
served in species that live in stable groups and in some cases, infected 
individuals reduce contact with others (Stockmaier et al., 2018, 2020, 
but see Willette et al., 2007). While such a reduction in contacts 
can also benefit conspecifics (e.g. Shakhar & Shakhar, 2015), there is 
relatively little evidence that sickness behaviours have evolved as a 
mechanism to protect others (e.g. based on kin relationships, Lopes 
et al., 2021). On the contrary, sickness behaviours can be suppressed 

to engage in important, partner- specific interactions. For instance, 
sick vampire bat mothers keep grooming their offspring potentially 
because the mother- pup relationship in this species is an important 
and lasting social bond (Stockmaier et al., 2020). As such, sickness 
behaviours thus far seem to benefit the infected individual more 
than others in stable groups. Research has mainly focused on how 
behavioural avoidance can vary across kin relationships (Poirotte & 
Charpentier, 2020; Stockmaier et al., 2020) and not on other, non- 
kin, relationship types (Figure 1). Are individuals less likely to avoid 
(or more likely to help) a sick partner they are socially bonded (but 
unrelated) to? Would infected individuals suppress their sickness 
behaviours only when interacting with some, but not other group 
members based on the strength of their social relationships?

3.2  |  Behavioural resistance in stable groups

Self- medication is a resistance behaviour that has been observed 
in species that live in stable groups. For instance, bonobos self- 
medicate with hispid whole- leaves when infected with gastroin-
testinal parasites (Fruth et al., 2014). Similarly, self- grooming can 
reduce parasite load (Hart, 1990). While such resistance behaviours 
benefit the individual, they might also benefit the group, if they 
spread through social learning (Kavaliers & Choleris, 2018; Poirotte 
& Charpentier, 2023) or if they reduce transmission to others. 
However, the group- wide epidemiological effects of individual para-
site resistance behaviours and how they could potentially spread 
and evolve through mechanisms such as cultural evolution within 
stable groups are understudied (Figure 1). In addition to individual 
resistance, group- level resistance behaviours such as allogroom-
ing occur in stable groups (Hart, 1990), such as in ambrosia beetles 
(Nuotclà et al., 2019).

Cannibalism (Nuotclà et al., 2019) and other forms of aggression 
towards sick individuals (McFarland et al., 2021), have been docu-
mented in stable groups and could increase group- level resistance by 
reducing infection of more group members if the infectious individu-
als are excluded from interacting with others. However, like groom-
ing, such aggressive behaviours in stable groups often serve social 
functions (e.g. gain in dominance status, McFarland et al., 2021) and 
their potential role in decreasing the parasite load within the group 
are unclear (Figure 1).

3.3  |  Behavioural tolerance in stable groups

In stable groups, behaviours that promote disease tolerance might 
not only manifest via maintenance of social behaviours (Adelman & 
Hawley, 2017), but also increased, cooperative behaviours (i.e. help-
ing behaviours, Stockmaier et al., 2021). Cooperative behaviours in-
clude individuals providing food (Loehle, 1995) or territory defence 
(Almberg et al., 2015) to support sick group members, all of which 
contribute to maintaining the fitness of parasitized individuals, with 
potential feedback benefits for the individual providing help if sick 
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individuals reciprocate after they recover (Albery, 2022). Currently, 
these helping behaviours in stable groups are understudied, poten-
tially because the physiological benefits and the clear link of helping 
behaviours to parasite tolerance are often challenging to quantify 
(Figure 1). Notably, any tolerance behaviours like maintenance of 
social behaviours or increased cooperative behaviours towards in-
fected group members could also lead to greater levels of transmis-
sion. While this will not necessarily affect the health of the group 
members receiving benefits from others and therefore being toler-
ant to the disease, it will affect pathogen prevalence and epidemiol-
ogy (Figure 1).

4  |  TR ANSITIONAL GROUPS

We define transitional groups as fluid, non- permanent groups 
with some level of interdependence based on individual needs. 
Aggregations are often driven by predator avoidance, food avail-
ability, seasonal reproduction, or shelter availability. Generally, 
individuals gain intermediate fitness benefits from joining 
groups or aggregations for certain periods. Examples include 
but are not limited to den- sharing in Caribbean spiny lobsters 
(Behringer et al., 2006), seasonal aggregations of birds (Bouwman 
& Hawley, 2010; Zylberberg et al., 2013), shoaling of tadpoles or 
fishes (Kiesecker et al., 1999; Stephenson, 2019; Stephenson 
et al., 2018; Tobler & Schlupp, 2008) or communal nesting of mice 
(Lopes et al., 2016). For animals in transitional groups, we would 
expect anti- parasite behaviours to primarily benefit the individual. 
Compared to animals that rely on stable group living, transiently 
social animals present promising study systems to understand the 
expression of anti- parasite behaviours in social contexts because 
of the plasticity they express in joining social situations (Hawley 
et al., 2020; Jog et al., 2022). Group- level avoidance, resistance, or 
tolerance effects might result from individual behaviours, but these 
likely do not represent behavioural strategies that have evolved to 
protect the group.

4.1  |  Behavioural avoidance in transitional groups

Avoidance of infected conspecifics is often observed in transi-
tional groups. For instance, Caribbean spiny lobsters avoid den- 
sharing with virus- infected conspecifics (Behringer et al., 2006), 
Trinidadian guppies avoid infectious, parasitized conspecifics 
(Stephenson, 2019; Stephenson et al., 2018), and bullfrog tad-
poles avoid shoaling with yeast- infected conspecifics (Kiesecker 
et al., 1999). Importantly, these behaviours are plastic in many sys-
tems, depending on factors such as infectiousness of the conspecific 
(Stephenson et al., 2018), sex (Stephenson, 2019) or individual im-
mune status (Stephenson, 2019; Zylberberg et al., 2013). In some 
cases, individuals might even choose not to avoid infectious conspe-
cifics to gain individual benefits. For example, male house finches 
preferably feed next to infected conspecifics, potentially because 

infected individuals are less aggressive, and, hence, competitive 
(Bouwman & Hawley, 2010).

4.2  |  Behavioural resistance in transitional groups

Behaviours that increase resistance have also been observed across 
transitionally social species. Sickness behaviours like lethargy, which 
could increase resistance by diverting energy to the immune re-
sponse (Hart, 1988), have been observed in several such species 
(Lopes et al., 2016, 2021). They are often suppressed in social situa-
tions to avoid loss of social status (Lopes et al., 2012), loss of mating 
opportunities (Lopes et al., 2013), or continued parental care (Aubert 
et al., 1997; Weil et al., 2006). As such, the expression of sickness 
behaviours most likely depends on trade- offs between individual 
benefits (e.g. conserving energetic resources) and loss of social op-
portunities (Lopes, 2014). Because they gain little from specific re-
lationships with other individuals, animals in transitional groups may 
also undertake selfish actions to reduce their own parasite load at 
the expense of others: for example, Trindiadian guppies with high 
ectoparasite load increase contacts with uninfected conspecifics, 
potentially allowing them to offload parasites to others (Reynolds 
et al., 2018).

4.3  |  Behavioural tolerance in transitional groups

When infected, animals in more fluid group settings might gain fit-
ness benefits such as predator avoidance or access to food (particu-
larly in larger group sizes), thereby ameliorating the cost of infection 
(individual tolerance, e.g. Ezenwa & Worsley- Tonks, 2018). However, 
this may lead to parasite transmission to others. Infected animals 
could also decrease social tendencies to increase their own toler-
ance. In western mosquitofish, parasite- infested fish reduce their 
shoaling tendencies, potentially allowing them to reduce food 
competition with others (Tobler & Schlupp, 2008, also leading to 
avoidance/contact- reduction).

5  |  PREDOMINANTLY SOLITARY ANIMAL S

We define solitary animals as those that generally do not come 
together in social aggregations, except in rare occasions such as 
mating or for periods of joint parental care. Often, these species 
are characterized by lack of individual recognition and more fre-
quent aggressive interactions (Kappeler et al., 2015). Examples of 
solitary or mostly solitary species include desert tortoises (Aiello 
et al., 2016), sleepy lizards (Bull et al., 2012), and octopuses (Locatello 
et al., 2013). Fundamentally, solitary animals will rarely interact di-
rectly relative to more social species. They do not have access to 
the many disease- related and general benefits of sociality (Ezenwa 
et al., 2016; Kappeler et al., 2015) and instead will more often be 
competing with their conspecifics. As such, we expect higher focus 
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on direct benefits to the individual in their expression of behavioural 
anti- parasite behaviours and minimal group- level effects.

5.1  |  Behavioural avoidance in solitary animals

Because of its direct benefits to the individual and the lack of social 
benefits to be gained from others, we expect that avoidance of in-
fectious conspecifics could be common, however, because of their 
sparse contact patterns, this will often not translate into significant 
social interaction changes. Concurrently, solitary animals' tendency 
to remain asocial for other reasons may make infection- related 
avoidance difficult to discern empirically (Figure 1). In mating con-
texts, conspecific avoidance has been demonstrated in solitary spe-
cies of lizards (Martín et al., 2007) and birds (Borgia & Collis, 1989). 
We predict that avoidance in a mating context may also more broadly 
depend on the risks and costs associated with finding a mating part-
ner (e.g. less avoidance shown in solitary species where individuals 
are sparsely distributed). Since solitary animals rarely meet— and do 
not rely on— conspecifics, it is also unlikely that they will retract from 
social interactions when infectious, unless retracting benefits them 
directly. For instance, immune- challenged octopuses will avoid in-
teracting with conspecifics, potentially because they are unable to 
engage in competitive interactions (Locatello et al., 2013). Likewise, 
solitary animals may actively suppress symptoms of infections such 
as sickness behaviours that result in social withdrawal if it increases 
their fitness.

5.2  |  Behavioural resistance in solitary animals

Given that evidence to date suggests that sickness behaviours are 
in part caused by the inflammatory response, controlled by specific 
neuronal populations (Lopes et al., 2021; Osterhout et al., 2022), and 
could have direct benefits for individuals as they could increase their 
resistance (Hart, 1988), we predict that solitary animals will express 
sickness behaviours. Solitary animals might, however, show less in-
tense sickness behaviours than non- solitary animals potentially be-
cause of the absence of social buffer mechanisms (i.e., behaviours 
that increase tolerance or resistance of the sick individual) that could 
protect sick individuals from, for instance, increased predation. 
Instead, solitary animals would need to prioritize pursuing resources 
to replace those lost to the parasite on their own. Contrary to this 
expectation, however, a recent review of sickness behaviours across 
vertebrates found that the solitary species that have been studied 
show sickness behaviours comparable to group- living species, po-
tentially because solitary animals experience fewer social costs of 
behaving sick (Lopes, 2014; Lopes et al., 2021). This pattern remains 
to be validated with more comparative studies of sickness behav-
iours across the social spectrum, especially in closely related spe-
cies that vary in their social organization (Figure 1). Infected solitary 
animals might also suppress sickness behaviours and their positive 
effects on parasite resistance if this suppression strongly benefits 

them such as in the context of parental care. For instance, when in-
fected, burying beetles will continue to care for their young despite 
high costs to themselves (Ratz et al., 2021).

5.3  |  Behavioural tolerance in solitary animals

We are not aware of any incidences of behavioural tolerance in soli-
tary animals; it is very likely that they express them, but perhaps 
due to the field's tendency to focus on more- social animals rather 
than more- solitary ones, there have been few documented exam-
ples (Figure 1).

6  |  OPEN QUESTIONS ACROSS ALL 
SOCIAL GROUP STRUC TURES

6.1  |  Group- level responses to parasite infection

A vital element of further investigation will involve measuring how 
anti- parasite behaviours expressed by certain group members af-
fect disease risk for other group members (Figure 1). For most 
social species, there is a lack of studies linking individual behav-
iours such as aggregation, avoidance, social isolation, hygiene (e.g. 
grooming), or self- medication to group- wide transmission dynam-
ics. Parasites could also be diluted over the group, which is known 
to happen in transitional groups of juvenile sticklebacks (Poulin & 
FitzGerald, 1989) or Galapagos marine iguanas (Wikelski, 1999), as 
well as in colonial groups of ants (Konrad et al., 2012) and termites 
(Liu et al., 2015). In principle, such parasite dilution could lead to 
multiple scenarios. If individuals “offload” parasites to other group 
members (i.e., by choosing to be near others) their own resistance 
should increase. In colonial organisms, parasite dilution may pro-
mote group- level tolerance if colony health is maintained by dilut-
ing parasite load across more individuals compared to having the 
same load concentrated in fewer individuals, as individuals can often 
cope with lower infection doses and maintain their health (Konrad 
et al., 2012). Similarly, group- level resistance might arise if dilution 
reduces parasite replication, as fewer individuals fall sick and shed 
pathogens. Whether the same mechanism is at play in non- colonial 
social groups remains largely unexplored and deeper knowledge of 
the exact mechanisms will further help to demarcate group- level tol-
erance and resistance (Figure 1). Answering some of these questions 
necessitates monitoring all group members simultaneously, which 
has become easier due to new tracking and computational tools 
(Geffre et al., 2020; Mersch et al., 2013; Walter & Couzin, 2021). 
These approaches may help to understand collective behavioural 
responses to parasites and have to date been prominently used on 
social insects (e.g. Stroeymeyt et al., 2018; Geffre et al., 2020, but 
see Jolles et al., 2020) to reveal group- level responses to parasite 
infections in the form spatial and behavioural compartmentaliza-
tion of contact networks, which provides a form of organizational 
immunity (e.g. Stroeymeyt et al., 2014). Achieving further crosstalk 
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between researchers working across forms of sociality in the animal 
kingdom may allow us to apply these methodological advances to 
achieve greater integration and a more unified theory of behavioural 
immunity.

6.2  |  Interplay between behavioural and 
physiological defences across social structures

Behavioural and physiological responses to parasitism can be con-
nected; for example, sickness behaviours are partly a result of the in-
flammatory response (Lopes et al., 2021; Osterhout et al., 2022). The 
way animal physiology changes upon perception of parasitism risk 
(discussed in Lopes, 2022, and see Love et al., 2021) may likewise 
lead to behavioural avoidance of parasitism and even potentially pre-
pare animals for infection, leading to increased physiological resist-
ance or tolerance. Indeed, immune status affects the way that social 
insects perform sanitary care (Konrad et al., 2018), revealing the 
tight interplay between physiological immunity and the expression 
of hygiene behaviour. It has long been debated whether collective 
anti- parasite behaviours expressed in highly social species such as 
mutual hygiene in ants and termites (Hughes et al., 2002; Rosengaus 
et al., 1998) or collective fever in honeybees (Starks et al., 2000) re-
duce the need for individuals to invest into their own immune sys-
tem (Evans et al., 2006). Yet, there is no evidence for such a pattern 
when comparing the immune gene repertoire of solitary vs. social 
bees (Barribeau et al., 2015), maybe because the beneficial effects 
of group- level hygiene are counteracted by the higher transmission 
probability arising from frequent close social interactions (and/or 
that the former evolved to compensate for the latter). Interestingly, 
when animals forming transitional groups, such as migratory locusts, 
are exposed to crowding conditions, they upregulate their individual 
immune systems in a form of density dependent- prophylaxis (Wilson 
et al., 2002; but see Wilson et al., 2003) instead of displaying collec-
tive hygiene. It remains to be determined how the investment into 
individual versus group- level immunity manifests differently across 
hosts varying in social structure (Figure 1).

7  |  CONCLUDING REMARKS

Animals' behavioural responses to infection are a cornerstone of their 
behavioural immune system, and they vary substantially across the 
animal kingdom. We have identified a suite of such responses across 
a variety of social systems, with some suggested trends of divergent 
investment in individual-  versus group- level responses according to 
the species' social organization. Colonial groups are characterized by 
a high level of cooperative disease defences between colony mem-
bers because their fitness arises through performance at the level of 
the group rather than the individual colony member. Stable groups 
are characterized by interindividual relationships, and the degree of 
behavioural anti- parasite defences can be modulated according to 
the social setting, yet a link between relationship strength and these 

behaviours has not been clearly established and additional studies 
are required to test our prediction. Animals in transitional groups 
seem to show stronger tendencies for behaviours that benefit them-
selves (e.g. avoidance), if the benefits of such behaviours outweigh 
those of joining groups. This makes them excellent model systems 
to explore the cost– benefit trade- offs of anti- parasite behaviours. 
Finally, while solitary animals do show some forms of anti- parasite 
behaviours directed at conspecifics, the lack of research on these 
behaviours makes it hard to draw more general conclusions. One av-
enue to study these behaviours in predominantly solitary animals is 
within the context of their few social interactions such as mating or 
joint parental care interactions.

Overall, many questions have so far only been thoroughly studied 
in the most social groups, like the colonial groups of social insects. 
Extending these efforts equally to other animals that show differ-
ent degrees of sociality would allow deeper understanding of the in-
terplay between sociality, behaviour, and physiological responses to 
parasites. Insight could be gained by comparing phenotypes of the 
same or closely related species that vary in sociality, like solitary and 
social populations of halictid bees (Yagi & Hasegawa, 2012) or rac-
coons (Hirsch et al., 2013), or monogamous versus non- monogamous 
voles (McGraw & Young, 2010). Similarly, species that fluctuate in 
their degree of sociality over time, such as slime moulds with tran-
sient multicellularity (Wayne, 2010), or the solitary colony- founding 
phases in some social insects (Casillas- Pérez et al., 2022; Cole & 
Rosengaus, 2019; Manfredini et al., 2016) offer promising study 
systems. Moving forward, rigorously testing how anti- parasite be-
havioural defences vary with degree of sociality will provide a fuller 
understanding of behaviour as an integral component of immunity.
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