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Pathogen traits can vary greatly and heavily impact the ability of a pathogen
to persist in a population. Although this variation is fundamental to disease
ecology, little is known about the evolutionarypressures that drive these differ-
ences, particularly where they interact with host behaviour. We hypothesized
that host behaviours relevant to different transmission routes give rise to
differences in contact network structure, constraining the space over which
pathogen traits can evolve to maximize fitness. Our analysis of 232 contact
networks across mammals, birds, reptiles, amphibians, arthropods, fish and
molluscs found that contact network topology varies by contact type, most
notably in networks that are representative of fluid-exchange transmission.
Using infectious disease model simulations, we showed that these differences
in network structure suggest pathogens transmitted through fluid-exchange
contact types will need traits associated with high transmissibility to success-
fully proliferate, compared to pathogens that transmit through other types
of contact. These findings were supported through a review of known traits
of pathogens that transmit in humans. Our work demonstrates that contact
network structure may drive the evolution of compensatory pathogen
traits according to transmission strategy, providing essential context for
understanding pathogen evolution and ecology.
1. Introduction
Pathogens vary in a range of important characteristics including transmission
mode, infectivity and duration of infection, many of which determine epide-
miological characteristics such as their ability to persist in a population [1–5].
Although this diversity in pathogen traits is fundamental to disease ecology,
we know little about the ecological factors driving the evolution of such
traits; in particular, it is unclear how transmission ecology determines the
evolution of pathogen characteristics.

Pathogens are spread by a range of different contact types facilitated by
specific host behaviours such as respiration, physical contact or shared space
use, which define different pathogen transmission modes [6]. In a contact
network, the behaviour that defines its edges (i.e. a contact type) can be associated
with different transmission modes (e.g. mating versus grooming versus spatial
associations), and exhibit distinctive contact patterns [7–11]. For instance, when
analysing contact types in mice (Mus musculus), researchers found that agonistic,
grooming and sniffing events were associated with distinct network properties
such as density, average path length and node centrality [12]. Such network
properties can influence the transmission efficiency of pathogens, with
downstream impacts on the evolution of their traits [13–19]. Furthermore, it is
known that individual contact effort across contact types can be heterogeneous
(a concept known as social fluidity), and can lead to the formation of weak
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Table 1. The four transmission mode categories used to define our 232 contact networks based on the contact types present in our dataset, and the host
behaviours that represent each type.

transmission mode contact types in dataset example host behaviours

fluid-exchange fluid-exchange mating mammal intromission

bird cloacal transfer

spermatophore transfer to genitals in insects

trophallaxis mouth to mouth food sharing

direct physical dominance interactions headbutting

biting

physical contests

physical contact grooming

petting

touching

non-fluid-exchange mating spermatophore transfer to not genital body part

non-amplexus spawning

non-physical close non-physical social interactions group membership

spatial proximity

group foraging

synchronous resource sharing birds or bats using the same roost

possums sharing the same den

birds using the same feeders

voles caught in the same traps

indirect asynchronous resource sharing tortoises using same burrow at different times

birds building nests in same chamber at different times
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ties [9]. These weak ties play an important role in defining
network structure [18], but the extent to which they impact
the evolution of pathogen traits remains unknown. Under-
standing variation in these characteristics is essential for
understanding pathogen ecology, and therefore for developing
control measures and testing hypotheses regarding their
evolutionary origins.

Pathogens should evolve to maximize their fitness, princi-
pally described by their R0 (basic reproduction number, i.e.
the total number of new infections caused by one infection
in a totally susceptible population) [20]. To persist in a popu-
lation, a pathogen’s R0 must be greater than 1. A pathogen’s
R0 depends on both the behaviour of its host population, and
on its own transmissibility [1,21,22]. Host behaviours create
the relevant contact that defines the path of transmission
for a pathogen, while transmissibility represents the epide-
miological characteristics (e.g. infectious duration, infection
probability) that determine effective transmission upon a
relevant contact. Consequently, host behaviour can affect R0

which could drive the evolution of pathogen traits.
Associations between contact network structure and

pathogen traits are well-supported by theory. For example,
sexually transmitted pathogens such as gonorrhea (Neisseria
gonorrhoeae) or herpes simplex virus rely on rare, dyadic
transmission events, likely producing a sparse contact net-
work; to compensate for this sparseness, they are thought
to exhibit longer duration infections and higher infection
probability respectively [1,5,23]. By contrast, tick-borne flavi-
viruses are only infectious for about 2–3 days in mammal
hosts, but persist in tick populations due to their host’s
aggregated co-feeding behaviours and consequently high
rates of contact [24]. Despite these kinds of anecdotal obser-
vations, there is no comparative or meta-analytic evidence
to demonstrate the relationship between transmission routes
and pathogen characteristics.

Thus, a critical gap in disease ecology is our understand-
ing of how different contact types required for pathogen
transmission routes might exhibit distinct contact network
structure, and how they might alter the evolution of adaptive
pathogen characteristics required to capitalize on these host
networks. Thus, we sought to answer the following ques-
tions: (1) how does non-human contact network structure
differ depending on the transmission mode associated with
its contact type? (2) How does the resulting contact network
structure affect a pathogen’s ability to persist on that net-
work? (3) How might these results be reflected in known
pathogen traits? To address these questions, we conducted
a quantitative analysis on 232 animal contact networks
spanning eight taxonomic classes to investigate the impact
of contact type on pathogen traits. First, we categorized
networks into four different horizontal transmission mode
categories based on their contact types (table 1). Next, we
used a multivariate generalized linear mixed model
(GLMM) to identify how network structure is predicted
by its associated transmission mode category. We then
mathematically examined how pathogen traits (i.e. critical
transmissibility) may change in order to persist on these
different contact networks and compare our results to current
knowledge of pathogen traits. We provide practical evidence
that contact network structure is influenced by contact types,
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and that this structural variation causes differences in
pathogen transmissibility thresholds that are reflective of
our current knowledge of pathogen infection characteristics.
 lsocietypublishing.org/journal/rspb
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289:20221
2. Methods
In this study, we used a GLMM to examine how contact types
associated with different pathogen transmission modes predict
eight different descriptors of network structure. We then calcu-
lated a pathogen’s critical transmissibility (Tc) value on these
different network types, or the value of transmissibility (T )
necessary for a pathogen to persist on a network (basic reproduc-
tion number (R0) > 1) where epidemics might occur. Finally, we
collate published information on pathogen traits in humans
(due to the lack of these data in non-human systems) that
make up Tc (e.g. probability of infection, infectious period) and
provide a preliminary comparison between these pathogen
traits, their transmission routes, and our model predictions.
Therefore, we aimed to provide evidence that transmission
mode affects emergent contact networks, and therefore selects
for specific pathogen traits to maximize transmission and
persistence.
 389
(a) Dataset
We compiled a dataset of animal contact networks where edges
represent one of 12 different contact types, using the Animal
Social Network Repository (ASNR) [25,26]. The ASNR is an
open-source animal behaviour network library in which we have
compiled network data from the available literature across eight
animal taxonomic classes (Mammalia, Aves, Reptilia, Amphibia,
Insecta, Arachnida, Actinopterygii and Cephalapoda). Contact
types include groupmembership, non-physical social interactions,
spatial proximity, foraging interactions, trophallaxis (mouth-to-
mouth food sharing), synchronous and asynchronous resource
sharing, agonistic behaviours, grooming, other physical contact
or mating interactions. Our sample size for this study consisted
of 232 contact networks from all eight taxonomic classes (electronic
supplementary material, figure S1). Of these 232 networks, 181
had weighted edges determined by the duration, frequency or
association probability (e.g. half-weight index) of the contact
type. We assume that these networks were observed without the
presence of a pathogen or active infection.
(b) Defining and characterizing contact networks
For each network in our dataset, nodes represented an individual
animal and edges represented a contact type between two ani-
mals. Based on the contact type, we divided our dataset into
four different transmission mode categories (table 1). We focus
on four transmission modes that our sample represents well:
fluid-exchange, direct physical, non-physical close and indirect.
We define each transmission mode category as follows:

1. Fluid-exchange contact: host interactions that result in the
exchange of bodily fluids. This includes sexual contact such
as cloacal transfer, intromission and spermataphore transfer,
as well as direct food-sharing interactions such as trophallaxis.

2. Direct physical contact: interactions of physical touch that
include grooming, agonistic host behaviours (e.g. head-butting,
fighting), and other physical social contact.

3. Non-physical close contact: close spatial proximity in which
face-to-face contact, or respiratory droplet exchange,
could occur. This includes group memberships, or spatial
proximity.

4. Indirect contact: asynchronous resource-sharing interactions.
Indirect contact is unique in that individuals do not need to
be using the resource at the same time to be connected in
the network.

We note that our non-physical, physical and fluid-exchange
categories have an inherent nested structure with non-physical
the broadest category, and fluid exchange the most selective
(electronic supplementary material, figure S2). In other words,
pathogens that transmit on non-physical networks (i.e. respirat-
ory droplet pathogens such as SARS-CoV-2) can also transmit
on direct physical and fluid-exchange networks, but fluid-
exchange transmitted pathogens (e.g. sexually transmitted patho-
gens such as gonorrhea (Neisseria gonorrhoeae)) can only transmit
on fluid-exchange networks. We manage this nested structure by
classifying each empirical network into the most specific
category possible using the definitions above.

For each network, we calculated the following eight network
metrics that are known to influence infection dynamics and
social structure, ignoring edge weights (table 2): total network
density, degree heterogeneity, degree assortativity, average
clustering coefficient, average betweenness centrality, network
diameter, fragmentation and subgroup cohesion. Fragmentation
(i.e. the number of communities in each network), was estimated
using the Louvain method [27] and the remaining network
metrics were calculated using the NetworkX package in Python
(https://networkx.github.io/).
(c) Identifying how network structure depends on
transmission mode

To examine how contact network structure differs depending on
its associated transmission mode category, we fitted a multi-
variate GLMM using the MCMCglmm package in R [28],
where the eight network metrics (table 2) made up our multi-
variate response, and the associated transmission mode
category was our predictor variable.

We also controlled for the effect of network size on these
metrics by including the number of nodes as a predictor. Edge
weight type (weighted versus unweighted) was also included
to control for data sampling design and edge weighting criteria.
As the spatial scale of data collection has been shown to influence
network structure [18], we also included sampling scale as a pre-
dictor. Studies that collected data on captive animal populations
(where all nodes and interactions are theoretically known) were
labelled as captive sampling. Studies that focused data collection
on specific social groups were categorized as social sampling,
and those that focused data collection on all individuals within
a fixed spatial boundary were labelled as spatial sampling.
Since the social system of an animal species is also shown to
influence network structure [18], we included species social
structure (relatively solitary, gregarious and socially hierarchical
defined in electronic supplementary material, table S1 based on
[18]) as a predictor. Finally, we controlled for repeated measure-
ments within studies by including study ID as a random effect in
the analysis. We were unable to include a random effect for taxo-
nomic class or use a phylogenetically controlled model, because
there was an unbalanced representation of different taxa across
the four transmission mode categories that made these effects
difficult to fit successfully (electronic supplementary material,
figure S1).

All response variables were continuous; to encourage proper
model fitting we log-transformed then centred them (by subtract-
ing the mean) and then scaled to unit variances (by dividing by
the standard deviation). We ran one MCMC chain for 10 500 iter-
ations, with a thinning interval of 10 after burn-in of 500 with
uninformative priors. Non-physical contact transmission was
the intercept factor level for the transmission mode category
fixed effect. For each response variable, if the effect sizes of the
three remaining transmission mode categories overlapped with

https://networkx.github.io/


Table 2. The eight network metric response variables used in the multivariate GLMM: degree heterogeneity, degree assortativity, average betweenness
centrality, average clustering coefficient, fragmentation, cohesion and network diameter.

network metric definition visualization

degree

heterogeneity

the coefficient of variation (CV) in the frequency

distribution of each node’s number of contacts (also

known as the degree distribution). Equal to the

network’s mean degree divided by the standard

deviation node degree node degree

homogeneous heterogeneous

degree

assortativity

the tendency of contacts to have a similar degree (darker

node colour indicates higher degree). A disassortative

network has high degree individuals associating with

low-degree individuals. An assortative network has high-

degree individuals forming social bonds with each other

assortative disassortative

average

betweeness

centrality

the tendency of nodes to occupy a central position within

the social network (darker node colour indicates a more

central position)

high low

average clustering

coefficient

the tendency for a set of three individuals to be

interconnected (represented by triangles), indicating the

propensity of an individual’s social partners to interact

with each other (darker node colour indicates higher

clustering value)

high low

fragmentation the number of subgroups, within a network (grey edges

are within subgroups and red edges are among

subgroups)

high low

cohesion cohesion is the tendency of individuals to interact with

members of their own subgroups (grey edges) compared

to members of other subgroups (red edges)

high low

network diameter a measure of the longest of all the shortest paths lengths

between pairs of nodes in a network. Shown is an

example of a network with long network diameter of 6,

and a similar network with shorter network diameter of

4, indicated by red coloured edges

long short

network density the proportion of existing edges to possible edges in a

network

high low
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zero then it was considered not different from non-physical con-
tact. To examine differences between the remaining three modes,
we observed the proportional overlap between their effect sizes
across all 1000 iterations, multiplied by 2 per a two-tailed test;
if it was less than 0.05, then the response variables were con-
sidered different between the transmission mode categories.

Within the ASNR, several studies provided more than one
network for the study species or population. To avoid biasing
our sample towards these studies, we randomly selected a maxi-
mum of 15 networks from each study (n = 232). To ensure that
our results were not affected by this random subsampling, we
reran our model 1000 times, each time choosing a different
sample of networks from each study with more than 15 networks.
We then chose a random estimate from each model run and com-
puted an average of model estimates across the 1000 different
subsamples.

(i) Investigating the role of weak ties
To determine if weak ties (i.e. low edge weights) might drive
contact network structure across transmission modes, we recalcu-
lated all eight network metrics for each network in our dataset
when the lowest 5%, 10% and 15% of weighted edges were
dropped from the network. We then reran our GLMM to see if
differences in network metrics among our different transmission
mode categories still hold true when low-weight edges are no
longer accounted for.

(d) Characterizing critical transmission thresholds
We assume that our dataset consists of contact networks con-
structed in the absence of pathogens or active infections.
Therefore, to examine how network structure affects a patho-
gen’s ability to persist on a network, we must model the way a
pathogen spreads on these networks using mathematical models.

We sought to identify a pathogen’s critical transmissibility (Tc)
on contact networks based on transmission mode. For a pathogen
to persist in a network, its basic reproduction number (R0) must
be greater than 1, and R0 depends on both a pathogen’s T and
the contact patterns of the network it travels on. Therefore, for
each network, we sought Tc for which Tc(contact) ¼ R0 . 1. To
estimate Tc, we considered the impact of contact network structure
by calculating R0 using Monte Carlo simulations of a susceptible–
infected–recovered (SIR) model of infection spread through each
network. We ignored edge weights because the impact of inter-
action weight (e.g. contact duration or frequency) on infection
spread is not well understood generally. We used an SIR percola-
tion simulation model [29], where each outbreak was initiated by
infecting a randomly chosen individual in the network. For the
first generation of the simulation, the individual is given an oppor-
tunity to infect all its contacts, with transmissibility T, and then
recover. This process is then repeated for each infected node,
until no infections remain in the network. For each network, we
simulated 250 disease outbreaks and of those classified large-
scale epidemics as those where at least 10% of the population is
infected. We repeated this for each T value in the range (0.01–
0.8), and recorded the first T value for which at least 10% of the
outbreaks were large-scale epidemics. Percolation theory suggests
that our expectation for the probability of having a large-scale epi-
demic should match the expected size of a large-scale epidemic
[29]. This reported T value is our estimate of the network’s critical
transmissibility Tc.

Past studies suggest that degree (i.e. density) and degree het-
erogeneity are the most important aspects of network structure
affecting how a pathogen will transmit across a network [30].
In order to test this, we considered two control scenarios
where we (1) isolated the effect of homogeneous degree (i.e. all
individuals have the same number of contacts) on Tc and (2) iso-
lated the effect of heterogeneous degree (i.e. on average,
individuals have the number of contacts as scenario 1, but
individual degree varies around this mean) on Tc. Therefore,
we sought Tc for which Tchkei ¼ R0 . 1, where hkei is the aver-
age excess degree of the network. The excess degree is the
potential number of contacts an individual can infect after they
have been infected by one of their contacts, and on average this
value is larger for networks with degree heterogeneity than for
homogeneous degree networks [22].

For the first control scenario, we considered a pathogen’s Tc

in a homogeneous degree network, in which the average excess
degree, hkei, is:
hkei ¼ hki � 1, ð2:1Þ
where hki is the average degree of the network. For the
second control scenario, we considered a network with degree
heterogeneity, thus the average excess degree is:

hkei ¼ hk2i � hki
hki : ð2:2Þ

We consider these to be ‘control’ scenarios because equations
(2.1) and (2.2) allow us to consider only the two network metrics
of interest (density and degree heterogeneity), while our simu-
lation method will inherently take in to account all aspects of
network structure (centrality, clustering, etc.). By isolating how
homogeneous and heterogeneous degree effects Tc, and compar-
ing these results to our full network structure simulation
method, we can elucidate how much of the variation in Tc may
be attributed to the degree (density) and degree heterogeneity of
a network.

We compared the Tc values for each transmission mode cat-
egory of contact networks (non-physical close, direct physical,
fluid-exchange, indirect) within each scenario using a one-way
ANOVA, and pairwise t-tests with a Tukey HSD family-wise
error-rate correction.
(e) Examining diversity of empirical pathogen
characteristics

To examine how our results are reflected in known pathogen
traits, we considered the transmissibility of a pathogen (T ) as a
function of its infectious duration (G) and its probability of
infection (β) [21,22]:

T ¼ b

bþ ð1=GÞ , ð2:3Þ

To provide context for the covarying characteristics of known
pathogens, we examine known β and G values (infection charac-
teristics) for a small set of well-characterized pathogens to see
how they compare to our findings. Because data on pathogen
traits in non-human animals is limited, we instead focus on
these traits in common human pathogens. We use two systematic
reviews on the natural histories of pathogens for common dis-
eases in preschools [31,32] to summarize data on pathogens
that use each transmission mode. We only included the patho-
gens in our summary if the source of the data was from a well-
designed study, using the levels of evidence of I and II provided
in the first review [31] (electronic supplementary material, table
S2). If there were no data, or the source of the data was poor
(levels of evidence of III or IV) for the pathogen’s infectious
period (G), we instead used the shedding periods, defined as
the period of time during which an individual excretes the patho-
gen; the shedding period can be used to estimate the duration of
infectiousness when there is lack of direct evidence [31]. If there
were no or poor data for the shedding period, then it was not
included in this summary. We then verified the data for these
pathogens using the second review [32].
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Figure 1. The predicted distributions of six of the eight network metrics for each transmission mode category, based on the results of the GLMM. Letters represent
significant differences between transmission mode categories. Results for fragmentation and cohesion were not different among transmission mode categories and
are therefore not included in this figure. (Online version in colour.)
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Since these reviews did not contain any sexually transmitted
pathogens, we took the 10 sexually transmitted pathogens listed
on the CDC website (www.cdc.gov/std) and examined the litera-
ture for their natural histories. We found studies that estimated
both the probability of infection (β) and infectious period (G) of
four of the 10 pathogens (syphilis [33,34], gonorrhea [35,36], chla-
mydia [37,38] and trichomoniasis [39,40]).
3. Results
(a) Network structure is dependent on host behaviour

type
We examined how network structure was predicted by the
pathogen transmission mode represented by specific contact
types using a multivariate GLMM. We summarized network
structure with eight topological characteristics (table 2), and all
the metrics except subgroup cohesion and fragmentation
differed among transmission mode categories. The predicted
distributions for the six remaining network metrics by trans-
mission mode category are summarized in figure 1 and all
othereffect sizes fromourmodel are in electronic supplementary
material, tables S3–S6.

Fluid-exchange contact networks differed from physical
and non-physical contact networks in all six network metrics
and differed from indirect contact networks for clustering
and network diameter. Indirect contact networks only differed
from physical and non-physical networks in their degree
heterogeneity. Physical and non-physical networks could not
be differentiated by the network metrics we tested. This
suggests that fluid-exchange contact types create the most
unique contact patterns.
Physical and non-physical contact networks had higher
density values and shorter network diameters than fluid-
exchange networks, and lower degree heterogeneity than
both fluid-exchange and indirect contact networks. This indi-
cates that physical and non-physical contact types create
networks that are more connected, with less variation in each
individual’s number of contacts.

Fluid-exchange contact networks also had lower degree
assortativity than physical and non-physical contact net-
works. That is, high-degree individuals in fluid-exchange
contact networks tend to be connected to low-degree individ-
uals, whereas high-degree individuals in physical and
non-physical contact networks are more likely to be con-
nected to other high degree individuals. Indirect contact
networks did not differ in their degree assortativity from
any other contact network. Fluid-exchange contact networks
also had lower average clustering values than all other
contact networks.

Finally, fluid-exchange contact networks have higher
betweenness centrality values than physical and non-physical
contact networks. This means that these networks tend to
have more ‘bridge nodes’, or nodes that connect different com-
munities together: this is despite the fact that the number of
communities (fragmentation) and the cohesiveness of those
communities do not differ among contact networks.
(i) Weak ties
To examine the role of weak interactions (i.e. low edgeweights)
in determining unique network structure, we reran the GLMM
on our dataset after dropping the lowest 5%, 10% or 15% of
weighted edges in each network. We found that the significant

http://www.cdc.gov/std
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Campylobacter enteritis
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Figure 3. The typical infectious periods of 25 different human pathogens
from two literature reviews [31,32] ( pathogens with asterisks came from
alternative sources [33–40]). Colour denotes the transmission mode category
of each pathogen. Shapes indicate the pathogen’s probability of infecting a
host given contact. (Online version in colour.)
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differences in average clustering and degree assortativity in
networks across the four transmission mode categories are
maintained as we filter low-weight edges. However, as edges
are filtered, there are no longer any differences in density and
degree heterogeneity (electronic supplementary material,
figure S3) among transmission mode categories. In other
words, without low weight edges, contact networks in each
transmission mode category become more similar in their
number and variation of contacts.
(b) Pathogen transmissibility must be higher for contact
networks with lower connectivity

We demonstrated the effect of full contact structure on critical
transmissibility values (Tc) in networks for each of our four
transmission mode categories. We then specifically examined
the effect of network density (average number of contacts)
and degree heterogeneity (variation in number of contacts)
on Tc in two different control scenarios.

We find that generally pathogens needed significantly
higher critical transmissibility values on fluid-exchange
contact networks than on physical, non-physical, and indirect
transmission contact networks (figure 2). By comparing
our empirical simulation scenario to the two control scen-
arios, we find that fluid-exchange and indirect contact
networks are more vulnerable to disease invasion (i.e. lower
Tc) than expected based on their average connectivity
(figure 2). This result is consistent with network epidemiol-
ogy theory, which predicts that higher degree heterogeneity
(as we find in fluid-exchange and indirect contact networks)
make disease invasion more likely. For physical and
non-physical contact networks, on the other hand, the critical
transmissibility is comparable in all three scenarios,
suggesting that the average network connectivity (or network
density) is sufficient to predict disease invasion in such
networks.
(c) The structure of a contact network can influence the
infection characteristics of associated pathogens

We compiled peer-reviewed data from common human
pathogens as life-history data on pathogens in non-human
animals was extremely limited. We visualized two of the
characteristics that define a pathogen’s transmissibility: its
infectious period and its infection probability (figure 3).

First, we showed that pathogens that transmit on indirect
contact networks (e.g. food/waterborne, faecal–oral) have
relatively short infectious periods, and varied between low
to moderate infection probability. Next, we found pathogens
that transmit on fluid-exchange contact networks (e.g. sex,
saliva) have the longest infectious periods. Of those, the
two pathogens (herpes, syphilis) that tend to have shorter
infectious periods (despite intermittent infectivity over long
periods) but alternatively have moderate to high infectivity.
These results suggest that fluid-exchange pathogens do in
fact have higher Tc values than other pathogens, and they
tend to increase their Tc by extending their infectious periods
over increasing their infection probability. Finally, we see that
pathogens that transmit on physical and non-physical contact
networks have some of the shortest infectious periods and a
range of infection probabilities, but most pathogens with
high infectivity are associated with these transmission modes.
4. Discussion
Our study shows that networks characteristic of different
pathogen transmission modes differ in terms of their struc-
ture. We then go on to demonstrate that differences in
network structure will affect the transmissibility required
for a pathogen to successfully proliferate. Finally, we suggest
these network structures likely impact the evolution of a focal
pathogen’s infection characteristics, supported by a review of
human pathogen traits.
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(a) Differences among contact networks and their
implications for pathogen spread

Most notably, compared to physical and non-physical contact
networks, fluid-exchange networks were less dense and had
more heterogeneous degree values, with greater diameters,
reduced clustering and greater disassortativity by degree.
They also had more bridge nodes than all other network
types. That is, these networks tend to be more poorly con-
nected, and with greater skew in nodes’ importance in the
network. This selection of network traits likely arises through
a combination of mechanisms, linked to the fact that many of
these networks were based on sexual interactions.

First, the infrequency of copulation events will drive low
network density, with correlated increases in the diameter of
the network and the prevalence of bridge connections;
second, the fact that all networks solely included male–
female copulation events likely increases clustering and
reduces the tendency for assortative mating; and finally, the
common nature of polygyny and overdispersed mating
events (i.e. few individuals monopolizing sexual resources)
will drive greater degree heterogeneity, as well as driving dis-
assortativity. These latter traits agree with our understanding
of the overdispersed nature of sexual interaction networks
[41–43]. The fluid-exchange categoryalso included trophallaxis
networks, which are also generally highly heterogeneous;
in ants, more than 50% of trophallaxis interactions may
come from less than 25%of individuals [44].While themajority
of the trophallaxis networks represented in our dataset
are indeed in ants, many other species such as birds and
mammals also partake in trophallaxis, usually in the form of
parental care [45]; these unique parent–offspring interactions
would also likely result in sparse, heterogeneous and highly
fragmented networks.

These traits could have a selection of important conse-
quences for transmission of pathogens through fluid-
exchange networks. First, less dense networks are likely to
provide fewer transmission opportunities for fluid-borne
pathogens [46], while larger diameters will inhibit the spread
of an outbreak. Second, degree heterogeneity is known to be
a key driver of sexually transmitted pathogen risk in human
contact networks [16,47]. Where contact numbers are highly
heterogeneous, superspreaders can lead to rapid, explosive
outbreaks, allowing pathogens to persist [21]. Indeed, past
work has shown that HIV, a sexually transmitted pathogen,
can exploit this contact heterogeneity to attain sufficient trans-
missibility, and other sexually transmitted pathogens likely do
the same [48]. However, previous work on contact networks
has shown that network density and individual variation in
contact are negatively correlated [49]. Our results support
these findings, aswe found fluid-exchange and indirect contact
networks have lower densities and higher-degree heterogen-
eity compared to physical and non-physical contact
networks. This suggests that while having high-degree hetero-
geneity might make a network more vulnerable to explosive
outbreaks [18,21], this may trade off with lower overall trans-
mission probabilities [49]. Third, low clustering values might
be beneficial for pathogens, especially given the low densities,
as a pathogen may be less likely to get stuck in cliques that
might form among individuals [50]. Fourth, the common
nature of bridge nodes in fluid-exchange networks might be
especially important when considering control measures for
pathogens on these networks. Previous work has shown that
pathogens with high transmissibility are able to persist in
socially fragmented networks because bridge nodes allow for
transmission among communities [30]. Therefore, the removal
of these nodes will prevent or slow pathogen spread through a
population [47]. While both physical and fluid-exchange trans-
mission require relatively close contact, controlling disease
spread by identifying bridge nodes might be more powerful
for fluid-exchange pathogens than for others.

Notably, indirect contact networks had a more hetero-
geneous degree distribution than physical and non-physical
contact networks, meaning there is more between-individual
variation in asynchronous resource sharing compared to that
in close proximity or physical touch. Past research has
demonstrated this phenomenon in many solitary desert
species that share burrows asynchronously, and while there
are many ecological factors that might drive these individual
preferences for resource-use patterns (such as differences in
sex, age and environment) [30,51], we still do not have a
full mechanistic understanding of them. It is possible that
this pattern will drive greater heterogeneity in infection
with indirectly transmitted pathogens.
(b) Network structure and the pressures on pathogen
characteristics

Pathogens that transmit on indirect contact networks (e.g.
food/waterborne, faecal–oral) seem to have relatively short
infectious periods, and vary between low tomoderate infection
probabilities (figure 3). However, we found many aspects of
indirect contact network structure were not different from
fluid-exchange networks (i.e. low network densities and high
degree heterogeneity) (figure 1). These results contradict
expectations that these indirect networks should be highly con-
nected since individuals need to have only used the same space
at some point in time to be connected. For example, many indi-
viduals sharing the same sanitation facilities through time such
as on airplanes [52], cruise ships [53] and hotels [54] can cause
recurring outbreaks of Norwalk virus, a common faecal–oral
pathogen; as there is no need to physically contact an individ-
ual to be infected by them, these contact networks are known to
be extremely highly connected [55]. There are several possible
explanations for our surprising finding: first, our results may
be driven by the fact that relatively solitary species (which
have low connectivity due to their social structure [30]) are
highly represented in our indirect networks sample. Addition-
ally, these networks often involve territorial species; resource
sharing (both synchronous and asynchronous) is likely mini-
mized in species that hold territories (e.g. [56]). Moreover,
territoriality can be sex specific in that males very rarely use
the same space and resources even asynchronously but females
can move freely between male territories, which can result in a
sex-specific degree heterogeneity in some species (e.g. [57,58]).
Indeed, our GLMM showed a high amount of variation in the
effect sizes of indirect contact networks and we found that
pathogens using indirect contact networks do not need high
Tc values to persist on these networks. This suggests that a
species’ social system strongly influences the structure of indir-
ect contact networks. Including additional species with other
social systemsmay increase the average connectivity of indirect
contact networks, which would be more representative of their
associated pathogen characteristics. This paucity of variation in
social systems is a common problem in meta-analyses of social
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network structure, and ongoing data collection may help to
ameliorate this difficulty in the future.

Our simulations revealed that contact network structure
should motivate the evolution of higher transmissibility for
fluid-exchange pathogens to persist (figure 2); a prediction
that was supported by our literature review (figure 3). This
supports what we know about the host behaviours involved
in bodily fluid exchange; individuals usually have long
temporal gaps in between fluid-exchange events compared
to other potential disease transmission host behaviours [1].
Therefore, pathogens would benefit more from longer
infectious periods giving them more time to spread.

(c) The role of weak ties in defining relevant disease-
spreading contact

Previous studies have shown that structural differences
between networks are primarily driven by ‘weak ties’ that are
disproportionately lower in intensity, frequency, or duration
than other contacts [18]. When we eliminated weak ties, we
found that differences between transmission mode categories
persisted for some structural features (e.g. average clustering
and degree assortativity), but others (density and degree het-
erogeneity) were lost; in other words, removing the weak ties
from contact networks makes them more similar to each other
in their number and variation of contacts. Given that the struc-
tural features of density and degree heterogeneity were most
different among fluid-exchange networks, this finding suggests
that not only do individuals tend to vary in the number of fluid-
exchange contacts they have compared to their other types of
contacts, but individuals also vary more in the strength of con-
nections between their different fluid-exchange contacts,
compared to their other types of contacts. We hypothesize
that this might be the crucial difference between pathogens
that spread via fluid exchange and others, but additional data
would be required to confirm this hypothesis.

This heterogeneity in how individuals distribute their con-
tact effort is known as ‘social fluidity’, where higher social
fluidity suggests a higher prevalence of weak ties [9]. Past
work has shown that non-physical contact networks (e.g.
spatial association) have smaller values of social fluidity than
fluid-exchange networks (e.g. trophallaxis), suggesting that
social fluidity and weak ties are especially relevant when con-
sidering disease transmission potential in these networks [9].
In some instances, not considering a very brief or infrequent
contact as ‘relevant’ for disease transmission might make
sense, such as for pathogens that propagate on networks
with low social fluidity (e.g. flu). However, for pathogens
that are spread via fluid exchange, we found that the density
and degree heterogeneity of contact networks are important
predictors for determining their transmissibility and traits.
This suggests it is imperative to include short or infrequent
fluid-exchange interactions when considering the definition
of relevant contact for modelling the transmission of these
pathogens. By not including these ‘weak’ contacts, it is likely
that estimates of fluid-exchange pathogen spread would be
inaccurate, and proposed control measures based on these
estimates could be unreliable.

(d) Study limitations
Our study has some important limitations. First, we investi-
gated non-human animal networks, while using pathogen
traits in humans to understand the implications of network
structure on infection characteristics. We would expect
some aspects of human contact networks to differ from
animal contact networks, particularly with fluid-exchange
transmission. For example, human sexual networks have
much higher clustering values than what we observed in our
animal networks [59]. However, this could be due to the lack
of recorded same-sex sexual host behaviours in non-human
animal species; same-sex host behaviours including fluid
exchange do occur in many non-human animals and are there-
fore likely underrepresented in our sample [60]. Regardless,
even if true clustering values are higher than observed, we
would expect this to reduce the R0 of a pathogen in a network;
thismight further increase the transmissibility needed topersist
[59], further supporting our current results. Overall, we found
that network density and degree heterogeneity were the most
important metrics when considering a pathogen’s ability to
persist on a network; we show that fluid-exchange contact net-
works have low densities and high degree of variation which
holds true in human networks [1,16,47]. Future studies could
further validate this work by exploring the contact structures
of available human contact networks. Alternatively, future
work could provide a better overview of the natural histories
of pathogens in wildlife. While we would expect infection
characteristics to be similar based on our network analysis,
we suggest a more thorough review of these characteristics
across different taxa.

Our available network datasets likewise restricted our abil-
ity to test and untangle some factors. First, because we had a
lack of data on indirect contact networks in wildlife species,
wewere unable to investigate the evolution of traits of environ-
mentally transmitted pathogens. We also did not have good
representation of contact networks representative of each trans-
mission mode category across all taxonomic classes, which
reduced our ability to control for host taxonomy in our
model. Futureworkmay be able to ameliorate these difficulties
by measuring indirect contact networks from species with gre-
garious and hierarchical social makeups, as well increasing the
taxonomic sample size of each transmissionmode category, for
a better representation of contact networks across species and
social systems.

Lastly, our work does not consider the impacts of patho-
gen-mediated changes to contact structure as caused by
sickness behavioural changes due to host immune response
or pathogen virulence, nor due to pathogen manipulation of
host behaviour [15]. For example, rabies can cause increased
aggression and biting in hosts, which could increase the
number of edges in some physical contact networks [61]. By
contrast, some pathogens cause ‘sickness behaviours’ in their
hosts, such as bacterial pneumonia in kudu antelope (Tragela-
phus strepsiceros), where individuals have been shown to
develop fevers and reduce their daily activities by 60% [62].
In cases where infected individuals exhibit sickness behaviours
like these, theymay reduce their contact rates such that the sub-
sequent contact networks will have fewer edges. We assume
the networks in our dataset represent host behaviour in
the absence of active infections, but recognize that such dis-
ease-mediated behaviour change can alter both network
structure and realized pathogen characteristics (e.g. infectious
periods can be effectively reduced via sickness behaviours).
Future work must consider this critical feedback loop between
contact structure and pathogen characteristics, in light of
different pathogen transmission modes.
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(e) Broader disease ecology implications
It is widely accepted in disease ecology that host behaviour
drives pathogen spread, and we have demonstrated how
this relationship is affected by the type of contact necessary
for transmission. For epidemic dynamics, understanding
transmission routes are also necessary as they determine
how the density and structure of the population affect the
rate at which the disease will spread. Typically, if disease
spreads indirectly or through co-incident contact then the
transmission rate is assumed to scale proportionally with
population density (density-dependence), whereas if trans-
mission requires close, intentional contacts then we expect
social connectivity to determine the outcome (frequency-
dependence). Classically, this scaling of transmission with
population density has been based on the transmission
route of the pathogen, with sexually transmitted diseases
generally assumed to be transmitted in a frequency-depen-
dent manner [59,63], and respiratory-transmitted disease
expected to spread in a density-dependent manner. However,
past work has demonstrated that the scaling relationship
depends more explicitly on heterogeneity in contacts [9,64],
with higher heterogeneity being associated with less den-
sity-dependence, rather than pathogen biology. Our work
empirically links these two concepts by demonstrating that
pathogen transmission mode is associated with contact struc-
ture, e.g. contact networks relevant to sexually transmitted
diseases are more heterogeneous in contacts and thus are
expected to be frequency-dependent. However, our a priori
classification of behaviours by transmission mode may be
obscuring structural variability that exists within modes.
For example, Colman et al. [9] demonstrate that networks
with aggressive contacts (e.g. head-butting) have low hetero-
geneity (thus suggesting density-dependence), while
networks with bonding contacts (e.g. grooming) have high
heterogeneity (thus suggesting frequency-dependence). In
our work, we classified both of these contact types in the
physical transmission category, thus limiting the ability to
detect this variation in scaling within transmission modes.
Future work would benefit from a characterization of trans-
mission scaling based on contact network structure, rather
than assumptions about pathogen transmission modes.

Additional variation in host behaviour can be attributed
to social differences among and within species [18]. For
example, the pace-of-life-history can explain variation in
social relationships and across taxonomic scales. While we
control for different social systems in our model, there is
also potential for further network variation within these
social systems and within species. For example, mating
system dynamics and patterns of sexual promiscuity can
vary widely within groups and populations of the same
species, as a function of ecological variation and population
sex ratios [43,65,66]. Moreover, two ungulate species
Grevy’s zebra (Equus grevyi) and onagers (Equus hemionus
khur), which both have gregarious social systems, have been
shown to have significantly different network structures,
likely due to species traits that have evolved from inhabiting
different environments [67]. Additionally, recent work has
shown the importance of considering spatial components of
individual behaviour (e.g. home ranges, landscape use)
when modelling social networks and disease transmission
[68] as they allow for more accurate model estimates, includ-
ing a better inference of pathogen transmission modes [69].
We do expect there to be variation in host contact network
structure related to traits and spatial behaviours, and suggest
that future meta-analytic work that captures host heterogene-
ities and spatial structure will be necessary to better address
this problem empirically.
Data accessibility. All networks used in this study can be found in the
Animal Social Network Repository (https://github.com/bansallab/
asnr) [25]. All code can be found at https://github.com/mac532/
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The data are provided in the electronic supplementary material
[70].
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